
Contents

 .NET Core Guide
 About .NET Core
 Get started

 Get started with C# and Visual Studio Code
 Build a C# Hello World app with .NET Core in Visual Studio 2017
 Build a Visual Basic Hello World app with .NET Core in Visual Studio 2017
 Debug your C# or Visual Basic .NET Core Hello World application using Visual Studio

2017
 Publish your Hello World application with Visual Studio 2017
 Build a .NET Standard library with C# and .NET Core in Visual Studio 2017
 Build a .NET Standard library with Visual Basic and .NET Core in Visual Studio 2017
 Test a .NET Standard library with .NET Core in Visual Studio 2017
 Consume a .NET Standard library in Visual Studio 2017

 Windows Prerequisites
 macOS Prerequisites
 Linux Prerequisites
 What's new in .NET Core

 What's new in .NET Core 3.0
 What's new in .NET Core 2.2
 What's new in .NET Core 2.1
 What's new in .NET Core 2.0

 Application Compatibility
 Tutorials

 Templates for the CLI
 1 - Create an item template
 2 - Create a project template
 3 - Create a template pack

 Get started with .NET Core on macOS
 Get started with .NET Core on macOS using Visual Studio for Mac

 Building a complete .NET Core solution on macOS using Visual Studio for Mac
 Get started with .NET Core using the CLI tools
 Organizing and testing projects with the .NET Core command line
 Developing Libraries with Cross Platform Tools
 Create a .NET Core application with plugins
 Developing ASP.NET Core applications
 Hosting .NET Core from native code

 Native Interoperability
 Exposing .NET Core Components to COM

 Packages, Metapackages and Frameworks
 Changes in CLI overview

 Dependency management
 Additions to the csproj format

 Migration
 .NET Core 2.0 to 2.1
 Migrating from project.json
 Mapping between project.json and csproj
 Migrating from DNX

 Application Deployment
 Deploy apps with CLI tools
 Deploy apps with Visual Studio
 Creating a NuGet Package with Cross Platform Tools
 Self-contained deployment runtime roll forward
 Runtime package store

 Docker
 Introduction to .NET and Docker
 Containerize a .NET Core app
 Container Tools in Visual Studio

 Diagnostic tools
 Overview
 Managed debuggers
 Logging and tracing

https://docs.microsoft.com/visualstudio/containers/overview

 .NET Core CLI global tools
 dotnet-counters
 dotnet-dump
 dotnet-trace

 Unit Testing
 Unit testing best practices
 C# unit testing with xUnit
 C# unit testing with NUnit
 C# unit testing with MSTest
 F# unit testing with xUnit
 F# unit testing with NUnit
 F# unit testing with MSTest
 VB unit testing with xUnit
 VB unit testing with NUnit
 VB unit testing with MSTest
 Running selective unit tests
 Unit testing published output
 Live unit testing .NET Core projects with Visual Studio

 Continuous Integration
 Versioning

 .NET Core version selection
 Removing outdated runtimes and SDKs

 Runtime Identifier (RID) catalog
 .NET Core SDK Overview
 .NET Core CLI

 Overview
 Tools

 Global Tools
 Overview
 Create a Global Tool

 Troubleshoot tool usage issues
 Elevated access

https://docs.microsoft.com/visualstudio/test/live-unit-testing-start

 Extensibility Model
 Custom templates
 Enable TAB completion
 Telemetry
 global.json overview
 Reference

 dotnet
 dotnet build
 dotnet build-server
 dotnet clean
 dotnet help
 dotnet migrate
 dotnet msbuild
 dotnet new
 dotnet nuget

 dotnet nuget delete
 dotnet nuget locals
 dotnet nuget push

 dotnet pack
 dotnet publish
 dotnet restore
 dotnet run
 dotnet sln
 dotnet store
 dotnet test
 dotnet tool

 dotnet tool install
 dotnet tool list
 dotnet tool uninstall
 dotnet tool update

 dotnet vstest
 dotnet-install scripts

 Project reference commands
 dotnet add reference
 dotnet list reference
 dotnet remove reference

 Project package commands
 dotnet add package
 dotnet list package
 dotnet remove package

 .NET Core Additional Tools
 WCF Web Service Reference Provider
 dotnet-svcutil
 dotnet-svcutil.xmlserializer
 XML Serializer Generator

 Porting from .NET Framework
 .NET Framework technologies unavailable for .NET Core
 Analyzing third-party dependencies
 Porting libraries
 Organizing projects for .NET Core
 Tools to help with porting to .NET Core
 Using the Windows Compatibility Pack
 Port Windows Forms projects
 Port WPF projects

 Dependency loading
 Overview
 Understanding AssemblyLoadContext
 Loading details

 Default dependency probing
 Loading managed assemblies
 Loading satellite assemblies
 Loading unmanaged libraries

 Tutorials
 Create a .NET Core application with plugins

 How to use and debug assembly unloadability in .NET Core
 Build .NET Core from source

 .NET Core distribution packaging
 VS 2015/project.json docs

.NET Core Guide
9/24/2019 • 2 minutes to read • Edit Online

Download .NET Core

.NET Core 3.0

Create your first application

dotnet new console
dotnet run

Hello World!

Support

.NET Core is an open-source, general-purpose development platform maintained by Microsoft and the .NET
community on GitHub. It's cross-platform (supporting Windows, macOS, and Linux) and can be used to build
device, cloud, and IoT applications.

See About .NET Core to learn more about .NET Core, including its characteristics, supported languages and
frameworks, and key APIs.

Check out .NET Core Tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to
get your first app up and running. If you want to try .NET Core in your browser, look at the Numbers in C# online
tutorial.

Download the .NET Core SDK to try .NET Core on your Windows, macOS, or Linux machine. And if you prefer to
use Docker containers, visit the .NET Core Docker Hub.

All .NET Core versions are available at .NET Core Downloads if you're looking for another .NET Core version.

The latest version is .NET Core 3.0. New features include Windows Desktop support with Windows Presentation
Foundation (WPF) and Windows Forms, full stack C# web development with Blazor, new enhancements to
SignalR and Azure SignalR Service, new C# language features with C# 8, and much more. For a full listing of the
new features in .NET Core 3.0, see What's new in .NET Core 3.0.

After installing the .NET Core SDK, open a command prompt. Type the following dotnet commands to create and
run a C# application:

You should see the following output:

.NET Core is supported by Microsoft, on Windows, macOS, and Linux. It's updated for security and quality several
times a year, typically monthly.

.NET Core binary distributions are built and tested on Microsoft-maintained servers in Azure and supported just
like any Microsoft product.

Red Hat supports .NET Core on Red Hat Enterprise Linux (RHEL). Red Hat builds .NET Core from source and
makes it available in the Red Hat Software Collections. Red Hat and Microsoft collaborate to ensure that .NET Core

https://github.com/dotnet/docs/blob/master/docs/core/index.md
https://docs.microsoft.com/en-us/dotnet/core/about
https://github.com/dotnet/coreclr/blob/master/LICENSE.TXT
https://github.com/dotnet/core
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/tutorials/index
file:///T:/zske/csharp/tutorials/intro-to-csharp/numbers-in-csharp.yml
https://www.microsoft.com/net/download
https://hub.docker.com/_/microsoft-dotnet-core/
https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://dotnet.microsoft.com/platform/support/policy
http://redhatloves.net/
https://developers.redhat.com/products/softwarecollections/overview/

works well on RHEL.

About .NET Core
11/1/2019 • 7 minutes to read • Edit Online

Languages

APIs

Frameworks

.NET Core has the following characteristics:

Cross-platform: Runs on Windows, macOS, and Linux operating systems.
Consistent across architectures: Runs your code with the same behavior on multiple architectures, including
x64, x86, and ARM.
Command-line tools: Includes easy-to-use command-line tools that can be used for local development and in
continuous-integration scenarios.
Flexible deployment: Can be included in your app or installed side-by-side (user-wide or system-wide
installations). Can be used with Docker containers.
Compatible: .NET Core is compatible with .NET Framework, Xamarin, and Mono, via .NET Standard.
Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses. .NET Core is a .NET
Foundation project.
Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support.

C#, Visual Basic, and F# languages can be used to write applications and libraries for .NET Core. These languages
can be used in your favorite text editor or Integrated Development Environment (IDE), including:

Visual Studio
Visual Studio Code
Sublime Text
Vim

This integration is provided, in part, by the contributors of the OmniSharp and Ionide projects.

.NET Core exposes APIs for many scenarios, a few of which follow:

Primitive types, such as bool and int.
Collections, such as System.Collections.Generic.List<T> and
System.Collections.Generic.Dictionary<TKey,TValue>.
Utility types, such as System.Net.Http.HttpClient, and System.IO.FileStream.
Data types, such as System.Data.DataSet, and DbSet.
High-performance types, such as System.Numerics.Vector and Pipelines.

.NET Core provides compatibility with .NET Framework and Mono APIs by implementing the .NET Standard
specification.

Multiple frameworks have been built on top of .NET Core:

ASP.NET Core
Windows 10 Universal Windows Platform (UWP)
Tizen

https://github.com/dotnet/docs/blob/master/docs/core/about.md
https://github.com/dotnet/core/blob/master/os-lifecycle-policy.md
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://dotnetfoundation.org/
https://dotnet.microsoft.com/platform/support/policy
https://visualstudio.microsoft.com/vs/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://www.omnisharp.net/
http://ionide.io
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/integral-numeric-types
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.data.dataset
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore/
https://docs.microsoft.com/dotnet/api/system.numerics.vector
https://devblogs.microsoft.com/dotnet/system-io-pipelines-high-performance-io-in-net/
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/aspnet/core/
https://developer.microsoft.com/windows
https://developer.tizen.org/development/training/.net-application

Composition

Open source

Designed for adaptability

.NET Core is composed of the following parts:

The .NET Core runtime, which provides a type system, assembly loading, a garbage collector, native interop, and
other basic services. .NET Core framework libraries provide primitive data types, app composition types, and
fundamental utilities.
The ASP.NET runtime, which provides a framework for building modern cloud-based internet connected
applications, such as web apps, IoT apps, and mobile backends.
The .NET Core CLI tools and language compilers (Roslyn and F#) that enable the .NET Core developer
experience.
The dotnet tool, which is used to launch .NET Core apps and CLI tools. It selects the runtime and hosts the
runtime, provides an assembly loading policy, and launches apps and tools.

These components are distributed in the following ways:

.NET Core Runtime -- includes the .NET Core runtime and framework libraries.
ASP.NET Core Runtime -- includes ASP.NET Core and .NET Core runtime and framework libraries.
.NET Core SDK -- includes the .NET CLI Tools, ASP.NET Core runtime, and .NET Core runtime and framework.

.NET Core is open source (MIT license) and was contributed to the .NET Foundation by Microsoft in 2014. It's now
one of the most active .NET Foundation projects. It can be used by individuals and companies, including for
personal, academic, or commercial purposes. Multiple companies use .NET Core as part of apps, tools, new
platforms, and hosting services. Some of these companies make significant contributions to .NET Core on GitHub
and provide guidance on the product direction as part of the .NET Foundation Technical Steering Group.

.NET Core has been built as a very similar but unique product compared to other .NET products. It was designed to
enable broad adaptability to new platforms and workloads and it has several OS and CPU ports available (and it
may be ported to many more).

The product is broken into several pieces, enabling the various parts to be adapted to new platforms at different
times. The runtime and platform-specific foundational libraries must be ported as a unit. Platform-agnostic
libraries should work as-is on all platforms, by construction. There's a project bias towards reducing platform-
specific implementations to increase developer efficiency, preferring platform-neutral C# code whenever an
algorithm or API can be implemented in-full or in-part that way.

People commonly ask how .NET Core is implemented in order to support multiple operating systems. They
typically ask if there are separate implementations or if conditional compilation is used. It's both, with a strong bias
towards conditional compilation.

You can see in the following chart that the vast majority of CoreFX is platform-neutral code that is shared across all
platforms. Platform-neutral code can be implemented as a single portable assembly that is used on all platforms.

https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/aspnet/home
https://github.com/dotnet/cli
https://github.com/dotnet/roslyn
https://github.com/microsoft/visualfsharp
https://github.com/dotnet/core-setup
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://github.com/dotnet/core
https://github.com/dotnet/core/blob/master/LICENSE.TXT
https://dotnetfoundation.org
https://dotnetfoundation.org/blog/tsg-welcome
https://en.wikipedia.org/wiki/Conditional_compilation
https://github.com/dotnet/corefx

Comparisons to other .NET implementations

Comparison with .NET Framework

Windows and Unix implementations are similar in size. Windows has a larger implementation since CoreFX
implements some Windows-only features, such as Microsoft.Win32.Registry but doesn't yet implement many
Unix-only concepts. You'll also see that the majority of the Linux and macOS implementations are shared across a
Unix implementation, while the Linux and macOS-specific implementations are roughly similar in size.

There's a mix of platform-specific and platform-neutral libraries in .NET Core. You can see the pattern in a few
examples:

CoreCLR is platform-specific. It builds on top of OS subsystems, like the memory manager and thread
scheduler.
System.IO and System.Security.Cryptography.Algorithms are platform-specific, given that storage and
cryptography APIs are different on each OS.
System.Collections and System.Linq are platform-neutral, given that they create and operate over data
structures.

It's probably easier to understand the size and shape of .NET Core by comparing it to existing .NET
implementations.

.NET was first announced by Microsoft in 2000 and then evolved from there. The .NET Framework has been the
primary .NET implementation produced by Microsoft during that nearly two decade period.

The major differences between .NET Core and the .NET Framework:

App-models -- .NET Core doesn't support all the .NET Framework app-models. In particular, it doesn't support
ASP.NET Web Forms and ASP.NET MVC, but it supports ASP.NET Core MVC. And starting with .NET Core
3.0, .NET Core also supports WPF and Windows Forms on Windows only.
APIs -- .NET Core contains a large subset of .NET Framework Base Class Library, with a different factoring
(assembly names are different; members exposed on types differ in key cases). In some cases, these differences
require changes to port source to .NET Core. For more information, see The .NET Portability Analyzer. .NET
Core implements the .NET Standard API specification.
Subsystems -- .NET Core implements a subset of the subsystems in the .NET Framework, with the goal of a
simpler implementation and programming model. For example, Code Access Security (CAS) isn't supported,
while reflection is supported.
Platforms -- The .NET Framework supports Windows and Windows Server while .NET Core also supports

https://github.com/dotnet/corefx/tree/master/src/Microsoft.Win32.Registry
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx/tree/master/src/System.IO
https://github.com/dotnet/corefx/tree/master/src/System.Security.Cryptography.Algorithms
https://github.com/dotnet/corefx/tree/master/src/System.Collections
https://github.com/dotnet/corefx/tree/master/src/System.Linq
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/net-standard

Comparison with Mono

The future

macOS and Linux.
Open Source -- .NET Core is open source, while a read-only subset of the .NET Framework is open source.

While .NET Core is unique and has significant differences to the .NET Framework and other .NET implementations,
it's straightforward to share code between these implementations, using either source or binary sharing
techniques.

Because .NET Core supports side-by-side installation and its runtime is completely independent of the .NET
Framework, it can be installed on machines with .NET Framework installed without any issues.

Mono is the original cross-platform implementation of .NET. It started out as an open-source alternative to .NET
Framework and transitioned to targeting mobile devices as iOS and Android devices became popular. It can be
thought of as a community clone of the .NET Framework. The Mono project team relied on the open .NET
standards (notably ECMA 335) published by Microsoft to provide a compatible implementation.

The major differences between .NET Core and Mono:

App-models -- Mono supports a subset of the .NET Framework app-models (for example, Windows Forms)
and some additional ones for mobile development (for example, Xamarin.iOS) through the Xamarin product.
.NET Core doesn't support Xamarin.
APIs -- Mono supports a large subset of the .NET Framework APIs, using the same assembly names and
factoring.
Platforms -- Mono supports many platforms and CPUs.
Open Source -- Mono and .NET Core both use the MIT license and are .NET Foundation projects.
Focus -- The primary focus of Mono in recent years is mobile platforms, while .NET Core is focused on cloud
and desktop workloads.

It was announced that .NET 5 will be the next release of .NET Core and represents a unification of the platform. The
project aims to improve .NET in a few key ways:

Produce a single .NET runtime and framework that can be used everywhere and that has uniform runtime
behaviors and developer experiences.
Expand the capabilities of .NET by taking the best of .NET Core, .NET Framework, Xamarin and Mono.
Build that product out of a single code-base that developers (Microsoft and the community) can work on and
expand together and that improves all scenarios.

For more details about what's being planned for .NET 5, see Introducing .NET 5.

https://github.com/microsoft/referencesource
https://www.mono-project.com/
https://github.com/mono/mono
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md
https://www.xamarin.com/platform
http://docs.go-mono.com/?link=root%3a%2fclasslib
https://devblogs.microsoft.com/dotnet/introducing-net-5/

Get started with .NET Core
10/17/2019 • 2 minutes to read • Edit Online

Create an application

dotnet new console --output sample1
dotnet run --project sample1

Hello World!

Tutorials

This article provides information on getting started with .NET Core. .NET Core can be installed on Windows, Linux,
and macOS. You can code in your favorite text editor and produce cross-platform libraries and applications.

If you're unsure what .NET Core is, or how it relates to other .NET technologies, start with the What is .NET
overview. Put simply, .NET Core is an open-source, cross-platform implementation of .NET.

First, download and install the .NET Core SDK on your computer.

Next, open a terminal such as PowerShell, Command Prompt, or bash. Type the following dotnet commands
to create and run a C# application:

You should see the following output:

Congratulations! You've created a simple .NET Core application. You can also use Visual Studio Code, Visual Studio
(Windows only), or Visual Studio for Mac (macOS only), to create a .NET Core application.

You can get started developing .NET Core applications by following these step-by-step tutorials.

Windows
Linux
macOS

Build a C# "Hello World" Application with .NET Core in Visual Studio 2017.
Build a C# class library with .NET Core in Visual Studio 2017.
Build a Visual Basic "Hello World" application with .NET Core in Visual Studio 2017.
Build a class library with Visual Basic and .NET Core in Visual Studio 2017.
Watch a video on how to install and use Visual Studio Code and .NET Core.
Watch a video on how to install and use Visual Studio 2017 and .NET Core.
Getting started with .NET Core using the command-line.

See the Prerequisites for Windows development article for a list of the supported Windows versions.

https://github.com/dotnet/docs/blob/master/docs/core/get-started.md
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/download
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-using-CSharp-and-NET-Core/
https://channel9.msdn.com/Blogs/dotnet/Get-Started-NET-Core-Visual-Studio-2017/

Get started with C# and Visual Studio Code
10/7/2019 • 4 minutes to read • Edit Online

Prerequisites

Hello World

.NET Core gives you a fast and modular platform for creating applications that run on Windows, Linux, and
macOS. Use Visual Studio Code with the C# extension to get a powerful editing experience with full support for
C# IntelliSense (smart code completion) and debugging.

1. Install Visual Studio Code.
2. Install the .NET Core SDK.
3. Install the C# extension for Visual Studio Code. For more information about how to install extensions on Visual

Studio Code, see VS Code Extension Marketplace.

Let's get started with a simple "Hello World" program on .NET Core:

1. Open a project:

Open Visual Studio Code.

Click on the Explorer icon on the left menu and then click Open Folder.

Select File > Open Folder from the main menu to open the folder you want your C# project to be in
and click Select Folder. For our example, we're creating a folder for our project named HelloWorld.

2. Initialize a C# project:

Open the Integrated Terminal from Visual Studio Code by selecting View > Integrated Terminal
from the main menu.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/with-visual-studio-code.md
https://code.visualstudio.com/
https://dotnet.microsoft.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://code.visualstudio.com/docs/editor/extension-gallery

In the terminal window, type dotnet new console .

This command creates a Program.cs file in your folder with a simple "Hello World" program already
written, along with a C# project file named HelloWorld.csproj.

3. Resolve the build assets:

For .NET Core 1.x, type dotnet restore . Running dotnet restore gives you access to the required
.NET Core packages that are needed to build your project.

 Debug

NOTE
Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all
commands that require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a
valid command in certain scenarios where doing an explicit restore makes sense, such as continuous
integration builds in Azure DevOps Services or in build systems that need to explicitly control the time at
which the restore occurs.

4. Run the "Hello World" program:

Type dotnet run .

You can also watch a short video tutorial for further setup help on Windows, macOS, or Linux.

1. Open Program.cs by clicking on it. The first time you open a C# file in Visual Studio Code, OmniSharp
loads in the editor.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-using-CSharp-and-NET-Core
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-using-CSharp-and-NET-Core-on-MacOS
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-Csharp-dotnet-Core-Ubuntu
https://www.omnisharp.net/

2. Visual Studio Code should prompt you to add the missing assets to build and debug your app. Select Yes.

3. To open the Debug view, click on the Debugging icon on the left side menu.

4. Locate the green arrow at the top of the pane. Make sure the drop-down next to it has .NET Core Launch
(console) selected.

5. Add a breakpoint to your project by clicking on the editor margin, which is the space on the left of the line
numbers in the editor, next to line 9, or move the text cursor onto line 9 in the editor and press F9.

6. To start debugging, press F5 or select the green arrow. The debugger stops execution of your program
when it reaches the breakpoint you set in the previous step.

While debugging, you can view your local variables in the top left pane or use the debug console.

TIP

Add a class

7. Select the blue arrow at the top to continue debugging, or select the red square at the top to stop.

For more information and troubleshooting tips on .NET Core debugging with OmniSharp in Visual Studio Code, see
Instructions for setting up the .NET Core debugger.

using System;

namespace HelloWorld
{
 public class MyClass
 {
 public string ReturnMessage()
 {
 return "Happy coding!";
 }
 }
}

1. To add a new class, right click in the VSCode Explorer and select New File. This adds a new file to the folder
you have open in VSCode.

2. Name your file MyClass.cs. You must save it with a .cs extension at the end for it to be recognized as a
csharp file.

3. Add the code below to create your first class. Make sure to include the correct namespace so you can
reference it from your Program.cs file:

4. Call your new class from your main method in Program.cs by adding the code below:

https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md

FAQ
I'm missing required assets to build and debug C# in Visual Studio Code. My debugger says "No
Configuration."

See also

using System;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 var c1 = new MyClass();
 Console.WriteLine($"Hello World! {c1.ReturnMessage()}");
 }
 }
}

> dotnet run
Hello World! Happy coding!

5. Save your changes and run your program again. The new message should appear with the appended string.

The Visual Studio Code C# extension can generate assets to build and debug for you. Visual Studio Code prompts
you to generate these assets when you first open a C# project. If you didn't generate assets then, you can still run
this command by opening the Command Palette (View > Command Palette) and typing ">.NET: Generate
Assets for Build and Debug". Selecting this generates the .vscode, launch.json, and tasks.json configuration files
that you need.

Setting up Visual Studio Code
Debugging in Visual Studio Code

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/Docs/editor/debugging

Build a C# Hello World application with the .NET
Core SDK in Visual Studio 2017
11/3/2019 • 3 minutes to read • Edit Online

Prerequisites

A simple Hello World application

This article provides a step-by-step introduction to building, debugging, and publishing a simple .NET Core
console application using C# in Visual Studio 2017. Visual Studio 2017 provides a full-featured development
environment for building .NET Core applications. As long as the application doesn't have platform-specific
dependencies, the application can run on any platform that .NET Core targets and on any system that has .NET
Core installed.

Visual Studio 2017 or later with the ".NET Core cross-platform development" workload installed. You can develop
your app with .NET Core 2.1 or later versions.

For more information, see the Prerequisites for .NET Core on Windows article.

Begin by creating a simple "Hello World" console application. Follow these steps:

1. Launch Visual Studio. Select File > New > Project from the menu bar. In the New Project dialog, select
the Visual C# node followed by the .NET Core node. Then select the Console App (.NET Core) project
template. In the Name text box, type "HelloWorld". Select the OK button.

2. Visual Studio uses the template to create your project. The C# Console Application template for .NET Core
automatically defines a class, Program , with a single method, Main , that takes a String array as an
argument. Main is the application entry point, the method that's called automatically by the runtime when

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/with-visual-studio.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.microsoft.com/dotnet/api/system.string

Console.Write("Press any key to continue...");
Console.ReadKey(true);

it launches the application. Any command-line arguments supplied when the application is launched are
available in the args array.

The template creates a simple "Hello World" application. It calls the Console.WriteLine(String) method to
display the literal string "Hello World!" in the console window. By selecting the HelloWorld button with
the green arrow on the toolbar, you can run the program in Debug mode. If you do, the console window is
visible for only a brief time interval before it closes. This occurs because the Main method terminates and
the application ends as soon as the single statement in the Main method executes.

3. To cause the application to pause before it closes the console window, add the following code immediately
after the call to the Console.WriteLine(String) method:

This code prompts the user to press any key and then pauses the program until a key is pressed.

4. On the menu bar, select Build > Build Solution. This compiles your program into an intermediate
language (IL) that's converted into binary code by a just-in-time (JIT) compiler.

5. Run the program by selecting the HelloWorld button with the green arrow on the toolbar.

https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_
https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_

Enhancing the Hello World application

6. Press any key to close the console window.

Enhance your application to prompt the user for their name and display it along with the date and time. To modify
and test the program, do the following:

Console.WriteLine("\nWhat is your name? ");
var name = Console.ReadLine();
var date = DateTime.Now;
Console.WriteLine($"\nHello, {name}, on {date:d} at {date:t}!");
Console.Write("\nPress any key to exit...");
Console.ReadKey(true);

1. Enter the following C# code in the code window immediately after the opening bracket that follows the
static void Main(string[] args) line and before the first closing curly bracket:

This code replaces the contents of the Main method.

This code displays "What is your name?" in the console window and waits until the user enters a string
followed by the Enter key. It stores this string into a variable named name . It also retrieves the value of the
DateTime.Now property, which contains the current local time, and assigns it to a variable named date .
Finally, it uses an interpolated string to display these values in the console window.

2. Compile the program by choosing Build > Build Solution.

3. Run the program in Debug mode in Visual Studio by selecting the green arrow on the toolbar, pressing F5,
or choosing the Debug > Start Debugging menu item. Respond to the prompt by entering a name and
pressing the Enter key.

https://docs.microsoft.com/dotnet/api/system.datetime.now#System_DateTime_Now
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

Related articles

4. Press any key to close the console window.

You've created and run your application. To develop a professional application, take some additional steps to make
your application ready for release:

For information on debugging your application, see Debug your .NET Core Hello World application using
Visual Studio 2017.

For information on developing and publishing a distributable version of your application, see Publish your
.NET Core Hello World application with Visual Studio 2017.

Instead of a console application, you can also build a class library with .NET Core and Visual Studio 2017. For a
step-by-step introduction, see Building a class library with C# and .NET Core in Visual Studio 2017.

You can also develop a .NET Core console app on Mac, Linux, and Windows by using Visual Studio Code, a
downloadable code editor. For a step-by-step tutorial, see Getting Started with Visual Studio Code.

https://code.visualstudio.com/

Build a Visual Basic Hello World application with the
.NET Core SDK in Visual Studio 2017
10/30/2019 • 3 minutes to read • Edit Online

Prerequisites

A simple Hello World application

This topic provides a step-by-step introduction to building, debugging, and publishing a simple .NET Core console
application using Visual Basic in Visual Studio 2017. Visual Studio 2017 provides a full-featured development
environment for building .NET Core applications. As long as the application doesn't have platform-specific
dependencies, the application can run on any platform that .NET Core targets and on any system that has .NET
Core installed.

Visual Studio 2017 with the ".NET Core cross-platform development" workload installed. You can develop your
app with .NET Core 2.1 or later versions.

For more information, see Prerequisites for .NET Core on Windows.

Begin by creating a simple "Hello World" console application. Follow these steps:

1. Launch Visual Studio 2017. Select File > New > Project from the menu bar. In the New Project* dialog,
select the Visual Basic node followed by the .NET Core node. Then select the Console App (.NET Core)
project template. In the Name text box, type "HelloWorld". Select the OK button.

2. Visual Studio uses the template to create your project. The Visual Basic Console Application template for
.NET Core automatically defines a class, Program , with a single method, Main , that takes a String array as
an argument. Main is the application entry point, the method that's called automatically by the runtime

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/vb-with-visual-studio.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://docs.microsoft.com/dotnet/api/system.string

Console.Write("Press any key to continue...")
Console.ReadKey(true)

when it launches the application. Any command-line arguments supplied when the application is launched
are available in the args array.

The template creates a simple "Hello World" application. It calls the Console.WriteLine(String) method to
display the literal string "Hello World!" in the console window. By selecting the HelloWorld button with the
green arrow on the toolbar, you can run the program in Debug mode. If you do, the console window is
visible for only a brief time interval before it closes. This occurs because the Main method terminates and
the application ends as soon as the single statement in the Main method executes.

3. To cause the application to pause before it closes the console window, add the following code immediately
after the call to the Console.WriteLine(String) method:

This code prompts the user to press any key and then pauses the program until a key is pressed.

4. On the menu bar, select Build > Build Solution. This compiles your program into an intermediate
language (IL) that's converted into binary code by a just-in-time (JIT) compiler.

5. Run the program by selecting the HelloWorld button with the green arrow on the toolbar.

6. Press any key to close the console window.

https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_
https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_

Enhancing the Hello World application
Enhance your application to prompt the user for his or her name and to display it along with the date and time. To
modify and test the program, do the following:

Console.WriteLine(vbCrLf + "What is your name? ")
Dim name = Console.ReadLine()
Dim currentDate = DateTime.Now
Console.WriteLine($"{vbCrLf}Hello, {name}, on {currentDate:d} at {currentDate:t}")
Console.Write(vbCrLf + "Press any key to exit... ")
Console.ReadKey(True)

1. Enter the following Visual Basic code in the code window immediately after the opening bracket that
follows the Sub Main(args As String()) line and before the first closing bracket:

This code replaces the contents of the Main method.

This code displays "What is your name?" in the console window and waits until the user enters a string
followed by the Enter key. It stores this string into a variable named name . It also retrieves the value of the
DateTime.Now property, which contains the current local time, and assigns it to a variable named
currentDate . Finally, it uses an interpolated string to display these values in the console window.

2. Compile the program by choosing Build > Build Solution.

3. Run the program in Debug mode in Visual Studio by selecting the green arrow on the toolbar, pressing F5,
or choosing the Debug > Start Debugging menu item. Respond to the prompt by entering a name and
pressing the Enter key.

4. Press any key to close the console window.

https://docs.microsoft.com/dotnet/api/system.datetime.now#System_DateTime_Now
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/interpolated-strings

Related topics

You've created and run your application. To develop a professional application, take some additional steps to make
your application ready for release:

To debug your application, see Debug your .NET Core Hello World application using Visual Studio 2017.

To publish a distributable version of your application, see Publish your .NET Core Hello World application
with Visual Studio 2017.

Instead of a console application, you can also build a .NET Standard class library with Visual Basic, .NET Core, and
Visual Studio 2017. For a step-by-step introduction, see Build a .NET Standard library with Visual Basic and .NET
Core SDK in Visual Studio 2017.

Debug your C# or Visual Basic .NET Core Hello
World application using Visual Studio 2017
9/13/2019 • 11 minutes to read • Edit Online

Debugging in Debug mode

Setting a breakpoint

So far, you've followed the steps in Build a C# Hello World Application with .NET Core in Visual Studio 2017 or
Build a Visual Basic Hello World Application with .NET Core in Visual Studio 2017 to create and run a simple
console application. Once you've written and compiled your application, you can begin testing it. Visual Studio
includes a comprehensive set of debugging tools that you can use when testing and troubleshooting your
application.

Debug and Release are two of Visual Studio's default build configurations. The current build configuration is
shown on the toolbar. The following toolbar image shows that Visual Studio is configured to compile your
application in Debug mode.

You should always begin by testing your program in Debug mode. Debug mode turns off most compiler
optimizations and provides richer information during the build process.

Run your program in Debug mode and try a few debugging features:

C#
Visual Basic

1. A breakpoint temporarily interrupts the execution of the application before the line with the breakpoint is
executed.

Set a breakpoint on the line that reads Console.WriteLine($"\nHello, {name}, on {date:d} at {date:t}!");

by clicking in the left margin of the code window on that line or by choosing the Debug > Toggle
Breakpoint menu item with the line selected. As the following figure shows, Visual Studio indicates the
line on which the breakpoint is set by highlighting it and displaying a red circle in its left margin.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/debugging-with-visual-studio.md

2. Run the program in Debug mode by selecting the HelloWorld button with the green arrow on the toolbar,
pressing F5, or choosing Debug > Start Debugging.

3. Enter a string in the console window when the program prompts for a name and press Enter.

4. Program execution stops when it reaches the breakpoint and before the Console.WriteLine method
executes. The Autos window displays the values of variables that are used around the current line. The
Locals window (which you can view by clicking the Locals tab) displays the values of variables that are
defined in the currently executing method.

5. You can change the value of the variables to see how it affects your program. If the Immediate Window is
not visible, display it by choosing the Debug > Windows > Immediate menu item. The Immediate
Window lets you interact with the application you're debugging.

6. You can interactively change the values of variables. Enter name = "Gracie" in the Immediate Window
and press the Enter key.

Setting a conditional breakpoint

7. Enter date = new DateTime(2016,11,01,11,59,00) in the Immediate Window and press the Enter key.

The Immediate Window displays the value of the string variable and the properties of the DateTime
value. In addition, the value of the variables is updated in the Autos and Locals windows.

8. Continue program execution by selecting the Continue button in the toolbar or by selecting the Debug >
Continue menu item. The values displayed in the console window correspond to the changes you made in
the Immediate Window.

9. Press any key to exit the application and end Debug mode.

Your program displays the string that the user enters. What happens if the user doesn't enter anything? You can
test this with a useful debugging feature, the conditional breakpoint, which breaks program execution when one
or more conditions are met.

To set a conditional breakpoint and test what happens when the user fails to enter a string, do the following:

C#
Visual Basic

1. Right-click on the red dot that represents the breakpoint. On the context menu, select Conditions to open
the Breakpoint Settings dialog. Check the box for Conditions.

https://docs.microsoft.com/dotnet/api/system.datetime

String.IsNullOrEmpty(name)

? name == String.Empty

2. For the Conditional Expression replace "e.g. x == 5" with the following:

You're testing for a code condition, that the String.IsNullOrEmpty(name) method call is true either because
name has not been assigned a value or because its value is an empty string (""). You can also specify a hit
count, which interrupts program execution before a statement is executed a specified number of times, or a
filter condition, which interrupts program execution based on such attributes as a thread identifier, process
name, or thread name.

3. Select the Close button to close the dialog.

4. Run the program in Debug mode.

5. In the console window, press the Enter key when prompted to enter your name.

6. Because the condition we specified, name is either null or String.Empty, has been satisfied, program
execution stops when it reaches the breakpoint and before the Console.WriteLine method executes.

7. Select the Locals window, which shows the values of variables that are local to the currently executing
method, which is the Main method in your program. Observe that the value of the name variable is "" , or
String.Empty.

8. Confirm the value is an empty string by entering the following statement in the Immediate Window. The
result is true .

https://docs.microsoft.com/dotnet/api/system.string.empty
https://docs.microsoft.com/dotnet/api/system.string.empty

Stepping through a program

9. Select the Continue button on the toolbar to continue program execution.

10. Press any key to close the console window and exit Debug mode.

11. Clear the breakpoint by clicking on the dot in the left margin of the code window or by choosing the
Debug > Toggle Breakpoint menu item with the row selected.

Visual Studio also allows you to step line by line through a program and monitor its execution. Ordinarily, you'd
set a breakpoint and use this feature to follow program flow through a small part of your program code. Since
your program is small, you can step through the entire program by doing the following:

C#
Visual Basic

1. On the menu bar, choose Debug > Step Into or press the F11 key. Visual Studio highlights and displays
an arrow beside the next line of execution.

At this point, the Autos window shows that your program has defined only one variable, args . Because
you haven't passed any command-line arguments to the program, its value is an empty string array. In
addition, Visual Studio has opened a blank console window.

2. Select Debug > Step Into or press the F11 key. Visual Studio now highlights the next line of execution. As
the figure shows, it has taken less than one millisecond to execute the code between the last statement and
this one. args remains the only declared variable, and the console window remains blank.

Building a Release version

3. Select Debug > Step Into or press the F11 key. Visual Studio highlights the statement that includes the
name variable assignment. The Autos window shows that name is null , and the console window displays

the string "What is your name?".

4. Respond to the prompt by entering a string in the console window and pressing Enter. The console is
unresponsive, and the string you enter isn't displayed in the console window, but the Console.ReadLine
method will nevertheless capture your input.

5. Select Debug > Step Into or press the F11 key. Visual Studio highlights the statement that includes the
date (in C#) or currentDate (in Visual Basic) variable assignment. The Autos window shows the

DateTime.Now property value and the value returned by the call to the Console.ReadLine method. The
console window also displays the string entered when the console prompted for input.

6. Select Debug > Step Into or press the F11 key. The Autos window shows the value of the date variable
after the assignment from the DateTime.Now property. The console window is unchanged.

7. Select Debug > Step Into or press the F11 key. Visual Studio calls the Console.WriteLine(String, Object,
Object) method. The values of the date (or currentDate) and name variables appear in the Autos
window, and the console window displays the formatted string.

8. Select Debug > Step Out or press Shift and the F11 key. This stops step-by-step execution. The console
window displays a message and waits for you to press a key.

9. Press any key to close the console window and exit Debug mode.

Once you've tested the Debug build of your application, you should also compile and test the Release version. The
Release version incorporates compiler optimizations that can sometimes negatively affect the behavior of an
application. For example, compiler optimizations that are designed to improve performance can create race
conditions in asynchronous or multithreaded applications.

To build and test the Release version of your console application, change the build configuration on the toolbar
from Debug to Release.

When you press F5 or choose Build Solution from the Build menu, Visual Studio compiles the Release version
of your console application. You can test it as you did the Debug version of the application.

Once you've finished debugging your application, the next step is to publish a deployable version of your
application. For information on how to do this, see Publish the Hello World application with Visual Studio 2017.

https://docs.microsoft.com/dotnet/api/system.console.readline
https://docs.microsoft.com/dotnet/api/system.datetime.now#System_DateTime_Now
https://docs.microsoft.com/dotnet/api/system.console.readline
https://docs.microsoft.com/dotnet/api/system.datetime.now#System_DateTime_Now
https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_System_Object_System_Object_

Publish your .NET Core Hello World application with
Visual Studio 2017
8/20/2019 • 2 minutes to read • Edit Online

In Build a C# Hello World application with .NET Core in Visual Studio 2017 or Build a Visual Basic Hello World
application with .NET Core in Visual Studio 2017, you built a Hello World console application. In Debug your C#
Hello World application with Visual Studio 2017, you tested it using the Visual Studio debugger. Now that you're
sure that it works as expected, you can publish it so that other users can run it. Publishing creates the set of files
that are needed to run your application, and you can deploy the files by copying them to a target machine.

To publish and run your application:

1. Make sure that Visual Studio is building the Release version of your application. If necessary, change the
build configuration setting on the toolbar from Debug to Release.

2. Right-click on the HelloWorld project (not the HelloWorld solution) and select Publish from the menu.
You can also select Publish HelloWorld from the main Visual Studio Build menu.

3. Open a console window. For example in the Type here to search text box in the Windows taskbar, enter

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/publishing-with-visual-studio.md

Command Prompt (or cmd for short), and open a console window by either selecting the Command Prompt
desktop app or pressing Enter if it's selected in the search results.

4. Navigate to the published application in the bin\release\PublishOutput subdirectory of your application's
project directory. As the following figure shows, the published output includes the following four files:

HelloWorld.deps.json

The application's runtime dependencies file. It defines the .NET Core components and the libraries
(including the dynamic link library that contains your application) needed to run your application.
For more information, see Runtime Configuration Files.

HelloWorld.dll

The file that contains your application. It is a dynamic link library that can be executed by entering
the dotnet HelloWorld.dll command in a console window.

HelloWorld.pdb (optional for deployment)

A file that contains debug symbols. You aren't required to deploy this file along with your
application, although you should save it in the event that you need to debug the published version of
your application.

HelloWorld.runtimeconfig.json

The application's runtime configuration file. It identifies the version of .NET Core that your
application was built to run on. For more information, see Runtime Configuration Files.

The publishing process creates a framework-dependent deployment, which is a type of deployment where the
published application will run on any platform supported by .NET Core with .NET Core installed on the system.
Users can run your application by issuing the dotnet HelloWorld.dll command from a console window.

For more information on publishing and deploying .NET Core applications, see .NET Core Application
Deployment.

https://github.com/dotnet/cli/blob/85ca206d84633d658d7363894c4ea9d59e515c1a/Documentation/specs/runtime-configuration-file.md
https://github.com/dotnet/cli/blob/85ca206d84633d658d7363894c4ea9d59e515c1a/Documentation/specs/runtime-configuration-file.md

Build a .NET Standard library with C# and the .NET
Core SDK in Visual Studio 2017
5/15/2019 • 2 minutes to read • Edit Online

NOTE

Creating a class library solution

Creating the class library project

A class library defines types and methods that are called by an application. A class library that targets the .NET
Standard 2.0 allows your library to be called by any .NET implementation that supports that version of the .NET
Standard. When you finish your class library, you can decide whether you want to distribute it as a third-party
component or whether you want to include it as a bundled component with one or more applications.

For a list of the .NET Standard versions and the platforms they support, see .NET Standard.

In this topic, you'll create a simple utility library that contains a single string-handling method. You'll implement it
as an extension method so that you can call it as if it were a member of the String class.

Start by creating a solution for your class library project and its related projects. A Visual Studio Solution just
serves as a container for one or more projects. To create the solution:

1. On the Visual Studio menu bar, choose File > New > Project.

2. In the New Project dialog, expand the Other Project Types node, and select Visual Studio Solutions.
Name the solution "ClassLibraryProjects" and select the OK button.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/library-with-visual-studio.md
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/dotnet/api/system.string

Create your class library project:

1. In Solution Explorer, right-click on the ClassLibraryProjects solution file and from the context menu,
select Add > New Project.

2. In the Add New Project dialog, expand the Visual C# node, then select the .NET Standard node
followed by the Class Library (.NET Standard) project template. In the Name text box, enter
"StringLibrary" as the name of the project. Select OK to create the class library project.

The code window then opens in the Visual Studio development environment.

3. Check to make sure that our library targets the correct version of the .NET Standard. Right-click on the
library project in the Solution Explorer windows, then select Properties. The Target Framework text
box shows that we're targeting .NET Standard 2.0.

Next step

using System;

namespace UtilityLibraries
{
 public static class StringLibrary
 {
 public static bool StartsWithUpper(this String str)
 {
 if (String.IsNullOrWhiteSpace(str))
 return false;

 Char ch = str[0];
 return Char.IsUpper(ch);
 }
 }
}

4. Replace the code in the code window with the following code and save the file:

The class library, UtilityLibraries.StringLibrary , contains a method named StartsWithUpper , which
returns a Boolean value that indicates whether the current string instance begins with an uppercase
character. The Unicode standard distinguishes uppercase characters from lowercase characters. The
Char.IsUpper(Char) method returns true if a character is uppercase.

5. On the menu bar, select Build > Build Solution. The project should compile without error.

You've successfully built the library. Because you haven't called any of its methods, you don't know whether it
works as expected. The next step in developing your library is to test it by using a Unit Test Project.

https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char.isupper#System_Char_IsUpper_System_Char_

Build a .NET Standard library with Visual Basic and
the .NET Core SDK in Visual Studio 2017
10/30/2019 • 2 minutes to read • Edit Online

NOTE

Creating a class library solution

Creating the class library project

A class library defines types and methods that are called by an application. A class library that targets the .NET
Standard 2.0 allows your library to be called by any .NET implementation that supports that version of the .NET
Standard. When you finish your class library, you can decide whether you want to distribute it as a third-party
component or whether you want to include it as a bundled component with one or more applications.

For a list of the .NET Standard versions and the platforms they support, see .NET Standard.

In this topic, you'll create a simple utility library that contains a single string-handling method. You'll implement it
as an extension method so that you can call it as if it were a member of the String class.

Start by creating a solution for your class library project and its related projects. A Visual Studio Solution just
serves as a container for one or more projects. To create the solution:

1. On the Visual Studio menu bar, choose File > New > Project.

2. In the New Project dialog, expand the Other Project Types node, and select Visual Studio Solutions.
Name the solution "ClassLibraryProjects" and select the OK button.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/vb-library-with-visual-studio.md
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods
https://docs.microsoft.com/dotnet/api/system.string

Create your class library project:

1. In Solution Explorer, right-click on the ClassLibraryProjects solution file and from the context menu,
select Add > New Project.

2. In the Add New Project dialog, expand the Visual Basic node, then select the .NET Standard node
followed by the Class Library (.NET Standard) project template. In the Name text box, enter
"StringLibrary" as the name of the project. Select OK to create the class library project.

The code window then opens in the Visual Studio development environment.

3. Check to make sure that the library targets the correct version of the .NET Standard. Right-click on the
library project in the Solution Explorer windows, then select Properties. The Target Framework text box
shows that we're targeting .NET Standard 2.0.

Imports System.Runtime.CompilerServices

Namespace UtilityLibraries
 Public Module StringLibrary
 <Extension>
 Public Function StartsWithUpper(str As String) As Boolean
 If String.IsNullOrWhiteSpace(str) Then
 Return False
 End If

 Dim ch As Char = str(0)
 Return Char.IsUpper(ch)
 End Function
 End Module
End Namespace

Next step

4. Also in the Properties dialog, clear the text in the Root namespace text box. For each project, Visual Basic
automatically creates a namespace that corresponds to the project name, and any namespaces defined in
source code files are parents of that namespace. We want to define a top-level namespace by using the
namespace keyword.

5. Replace the code in the code window with the following code and save the file:

The class library, UtilityLibraries.StringLibrary , contains a method named StartsWithUpper , which returns a
Boolean value that indicates whether the current string instance begins with an uppercase character. The Unicode
standard distinguishes uppercase characters from lowercase characters. The Char.IsUpper(Char) method returns
true if a character is uppercase.

1. On the menu bar, select Build > Build Solution. The project should compile without error.

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/namespace-statement
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char.isupper#System_Char_IsUpper_System_Char_

You've successfully built the library. Because you haven't called any of its methods, you don't know whether it
works as expected. The next step in developing your library is to test it by using a Unit Test Project.

Test a .NET Standard library with .NET Core in Visual
Studio 2017
10/29/2019 • 9 minutes to read • Edit Online

Creating a unit test project

In Build a .NET Standard library with C# and .NET Core in Visual Studio 2017 or Build a .NET Standard library
with Visual Basic and .NET Core in Visual Studio 2017, you created a simple class library that adds an extension
method to the String class. Now, you'll create a unit test to make sure that it works as expected. You'll add your
unit test project to the solution you created in the previous article.

To create the unit test project, do the following:

C#
Visual Basic

NOTE

1. In Solution Explorer, open the context menu for the ClassLibraryProjects solution node and select Add
> New Project.

2. In the Add New Project dialog, select the Visual C# node. Then select the .NET Core node followed by
the MSTest Test Project (.NET Core) project template. In the Name text box, enter "StringLibraryTest" as
the name of the project. Select OK to create the unit test project.

In addition to an MSTest Test project, you can also use Visual Studio to create an xUnit test project for .NET Core.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/testing-library-with-visual-studio.md
https://docs.microsoft.com/dotnet/api/system.string

Adding and running unit test methods

3. Visual Studio creates the project and opens the UnitTest1.cs file in the code window.

The source code created by the unit test template does the following:

It imports the Microsoft.VisualStudio.TestTools.UnitTesting namespace, which contains the types
used for unit testing.

It applies the TestClassAttribute attribute to the UnitTest1 class. Each test method in a test class
tagged with the [TestMethod] attribute is executed automatically when the unit test is run.

It applies the TestMethodAttribute attribute to define TestMethod1 as a test method for automatic
execution when the unit test is run.

4. In Solution Explorer, right-click the Dependencies node of the StringLibraryTest project and select
Add Reference from the context menu.

5. In the Reference Manager dialog, expand the Projects node and check the box next to StringLibrary.
Adding a reference to the StringLibrary assembly allows the compiler to find StringLibrary methods.
Select the OK button. This adds a reference to your class library project, StringLibrary .

When Visual Studio runs a unit test, it executes each method marked with the TestMethodAttribute attribute in a
unit test class, the class to which the TestClassAttribute attribute is applied. A test method ends when the first
failure is encountered or when all tests contained in the method have succeeded.

https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testclassattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testmethodattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testmethodattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testclassattribute

ASSERT METHODS FUNCTION

Assert.AreEqual Verifies that two values or objects are equal. The assert fails if
the values or objects are not equal.

Assert.AreSame Verifies that two object variables refer to the same object. The
assert fails if the variables refer to different objects.

Assert.IsFalse Verifies that a condition is false . The assert fails if the
condition is true .

Assert.IsNotNull Verifies that an object is not null . The assert fails if the
object is null .

The most common tests call members of the Assert class. Many assert methods include at least two parameters,
one of which is the expected test result and the other of which is the actual test result. Some of its most frequently
called methods are shown in the following table:

You can also apply the ExpectedExceptionAttribute attribute to a test method. It indicates the type of exception a
test method is expected to throw. The test fails if the specified exception is not thrown.

In testing the StringLibrary.StartsWithUpper method, you want to provide a number of strings that begin with an
uppercase character. You expect the method to return true in these cases, so you can call the IsTrue method.
Similarly, you want to provide a number of strings that begin with something other than an uppercase character.
You expect the method to return false in these cases, so you can call the IsFalse method.

Since your library method handles strings, you also want to make sure that it successfully handles an empty string
(String.Empty), a valid string that has no characters and whose Length is 0, and a null string that has not been
initialized. If StartsWithUpper is called as an extension method on a String instance, it cannot be passed a null

string. However, you can also call it directly as a static method and pass a single String argument.

You'll define three methods, each of which calls its Assert method repeatedly for each element in a string array.
Because the test method fails as soon as it encounters the first failure, you'll call a method overload that allows
you to pass a string that indicates the string value used in the method call.

To create the test methods:

C#
Visual Basic

1. In the UnitTest1.cs code window, replace the code with the following code:

https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.expectedexceptionattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert.istrue
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert.isfalse
https://docs.microsoft.com/dotnet/api/system.string.empty
https://docs.microsoft.com/dotnet/api/system.string.length#System_String_Length
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using UtilityLibraries;

namespace StringLibraryTest
{
 [TestClass]
 public class UnitTest1
 {
 [TestMethod]
 public void TestStartsWithUpper()
 {
 // Tests that we expect to return true.
 string[] words = { "Alphabet", "Zebra", "ABC", "Αθήνα", "Москва" };
 foreach (var word in words)
 {
 bool result = word.StartsWithUpper();
 Assert.IsTrue(result,
 String.Format("Expected for '{0}': true; Actual: {1}",
 word, result));
 }
 }

 [TestMethod]
 public void TestDoesNotStartWithUpper()
 {
 // Tests that we expect to return false.
 string[] words = { "alphabet", "zebra", "abc", "αυτοκινητοβιομηχανία", "государство",
 "1234", ".", ";", " " };
 foreach (var word in words)
 {
 bool result = word.StartsWithUpper();
 Assert.IsFalse(result,
 String.Format("Expected for '{0}': false; Actual: {1}",
 word, result));
 }
 }

 [TestMethod]
 public void DirectCallWithNullOrEmpty()
 {
 // Tests that we expect to return false.
 string[] words = { string.Empty, null };
 foreach (var word in words)
 {
 bool result = StringLibrary.StartsWithUpper(word);
 Assert.IsFalse(result,
 String.Format("Expected for '{0}': false; Actual: {1}",
 word == null ? "<null>" : word, result));
 }
 }
 }
}

Note that your test of uppercase characters in the TestStartsWithUpper method includes the Greek capital
letter alpha (U+0391) and the Cyrillic capital letter EM (U+041C), and the test of lowercase characters in
the TestDoesNotStartWithUpper method includes the Greek small letter alpha (U+03B1) and the Cyrillic
small letter Ghe (U+0433).

2. On the menu bar, select File > Save UnitTest1.cs As. In the Save File As dialog, select the arrow beside
the Save button, and select Save with Encoding.

1. In the Confirm Save As dialog, select the Yes button to save the file.

2. In the Advanced Save Options dialog, select Unicode (UTF-8 with signature) - Codepage 65001
from the Encoding drop-down list and select OK.

If you fail to save your source code as a UTF8-encoded file, Visual Studio may save it as an ASCII file.
When that happens, the runtime doesn't accurately decode the UTF8 characters outside of the ASCII range,
and the test results won't be accurate.

3. On the menu bar, select Test > Run > All Tests. The Test Explorer window opens and shows that the tests
ran successfully. The three tests are listed in the Passed Tests section, and the Summary section reports
the result of the test run.

Handling test failures
Your test run had no failures, but change it slightly so that one of the test methods fails:

string[] words = { "alphabet", "Error", "zebra", "abc", "αυτοκινητοβιομηχανία", "государство",
 "1234", ".", ";", " " };

Dim words() As String = { "alphabet", "Error", "zebra", "abc", "αυτοκινητοβιομηχανία", "государство",
 "1234", ".", ";", " " }

1. Modify the words array in the TestDoesNotStartWithUpper method to include the string "Error". You don't
need to save the file because Visual Studio automatically saves open files when a solution is built to run
tests.

2. Run the test by selecting Test > Run > All Tests from the menu bar. The Test Explorer window indicates
that two tests succeeded and one failed.

3. In the Failed Tests section, select the failed test, TestDoesNotStartWith . The Test Explorer window displays
the message produced by the assert: "Assert.IsFalse failed. Expected for 'Error': false; actual: True". Because
of the failure, all strings in the array after "Error" were not tested.

Testing the Release version of the library

4. Undo the modification you did in step 1 and remove the string "Error". Rerun the test and the tests will
pass.

You've been running your tests against the Debug version of the library. Now that your tests have all passed and
you've adequately tested your library, you should run the tests an additional time against the Release build of the
library. A number of factors, including compiler optimizations, can sometimes produce different behavior between
Debug and Release builds.

To test the Release build:

1. In the Visual Studio toolbar, change the build configuration from Debug to Release.

2. In Solution Explorer, right-click the StringLibrary project and select Build from the context menu to
recompile the library.

3. Run the unit tests by choosing Test > Run > All Tests from the menu bar. The tests pass.

Now that you've finished testing your library, the next step is to make it available to callers. You can bundle it with
one or more applications, or you can distribute it as a NuGet package. For more information, see Consuming a
.NET Standard Class Library.

Consume a .NET Standard library in Visual Studio
2017
11/1/2019 • 5 minutes to read • Edit Online

Including a library as a project in a solution

Once you've created a .NET Standard class library by following the steps in Building a C# class library with .NET
Core in Visual Studio 2017 or Building a Visual Basic class library with .NET Core in Visual Studio 2017, tested it
in Testing a class library with .NET Core in Visual Studio 2017, and built a Release version of the library, the next
step is to make it available to callers. You can do this in two ways:

If the library will be used by a single solution (for example, if it's a component in a single large application),
you can include it as a project in your solution.

If the library will be generally accessible, you can distribute it as a NuGet package.

Just as you included unit tests in the same solution as your class library, you can include your application as part of
that solution. For example, you can use your class library in a console application that prompts the user to enter a
string and reports whether its first character is uppercase:

C#
Visual Basic

1. Open the ClassLibraryProjects solution you created in the Building a C# Class Library with .NET Core in
Visual Studio 2017 topic. In Solution Explorer, right-click the ClassLibraryProjects solution and select
Add > New Project from the context menu.

2. In the Add New Project dialog, expand the Visual C# node and select the .NET Core node followed by
the Console App (.NET Core) project template. In the Name text box, type "ShowCase", and select the
OK button.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/consuming-library-with-visual-studio.md

3. In Solution Explorer, right-click the ShowCase project and select Set as StartUp Project in the context
menu.

4. Initially, your project doesn't have access to your class library. To allow it to call methods in your class
library, you create a reference to the class library. In Solution Explorer, right-click the ShowCase project's
Dependencies node and select Add Reference.

5. In the Reference Manager dialog, select StringLibrary, your class library project, and select the OK
button.

6. In the code window for the Program.cs file, replace all of the code with the following code:

Distributing the library in a NuGet package

using System;
using UtilityLibraries;

class Program
{
 static void Main(string[] args)
 {
 int row = 0;

 do
 {
 if (row == 0 || row >= 25)
 ResetConsole();

 string input = Console.ReadLine();
 if (String.IsNullOrEmpty(input)) break;
 Console.WriteLine($"Input: {input} {"Begins with uppercase? ",30}: " +
 $"{(input.StartsWithUpper() ? "Yes" : "No")}\n");
 row += 3;
 } while (true);
 return;

 // Declare a ResetConsole local method
 void ResetConsole()
 {
 if (row > 0) {
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 Console.Clear();
 Console.WriteLine("\nPress <Enter> only to exit; otherwise, enter a string and press
<Enter>:\n");
 row = 3;
 }
 }
}

The code uses the row variable to maintain a count of the number of rows of data written to the console
window. Whenever it is greater than or equal to 25, the code clears the console window and displays a
message to the user.

The program prompts the user to enter a string. It indicates whether the string starts with an uppercase
character. If the user presses the Enter key without entering a string, the application terminates, and the
console window closes.

7. If necessary, change the toolbar to compile the Debug release of the ShowCase project. Compile and run
the program by selecting the green arrow on the ShowCase button.

You can debug and publish the application that uses this library by following the steps in Debugging your Hello
World application with Visual Studio 2017 and Publishing your Hello World Application with Visual Studio 2017.

You can make your class library widely available by publishing it as a NuGet package. Visual Studio does not
support the creation of NuGet packages. To create one, you use the dotnet command line utility:

1. Open a console window. For example in the Ask me anything text box in the Windows taskbar, enter
Command Prompt (or cmd for short), and open a console window by either selecting the Command Prompt

desktop app or pressing Enter if it's selected in the search results.

TIP

2. Navigate to your library's project directory. Unless you've reconfigured the typical file location, it's in the
Documents\Visual Studio 2017\Projects\ClassLibraryProjects\StringLibrary directory. The directory
contains your source code and a project file, StringLibrary.csproj.

3. Issue the command dotnet pack --no-build . The dotnet utility generates a package with a .nupkg
extension.

If the directory that contains dotnet.exe is not in your PATH, you can find its location by entering
where dotnet.exe in the console window.

For more information on creating NuGet packages, see How to Create a NuGet Package with Cross Platform
Tools.

Prerequisites for .NET Core on Windows
10/22/2019 • 4 minutes to read • Edit Online

.NET Core supported operating systems

.NET Core dependencies

NOTE

Prerequisites to develop .NET Core apps with Visual Studio

This article shows the supported OS versions in order to run .NET Core applications on Windows. The supported
OS versions and dependencies that follow apply to the three ways of developing .NET Core apps on Windows:

Command line
Visual Studio
Visual Studio Code

Also, if you're developing on Windows using Visual Studio, the Prerequisites to develop .NET Core apps with
Visual Studio section goes in more detail about minimum versions supported for .NET Core development.

The following articles have a complete list of .NET Core supported operating systems per version:

.NET Core 3.0

.NET Core 2.2

.NET Core 2.1

For download links and more information, see .NET downloads to download the latest version or .NET downloads
archive for older versions.

Microsoft Visual C++ 2015 Redistributable Update 3 must be manually installed when:

Installing .NET Core with the installer script.
Deploying a self-contained .NET Core application.
Building the product from source.
Installing .NET Core via a .zip file. This can include build/CI/CD servers.

For Windows 8.1 and earlier versions, or Windows Server 2012 R2 and earlier versions:

Make sure that your Windows installation is up-to-date and includes KB2999226, which can be installed through Windows
Update. If you don't have this update installed, you'll see an error like the following when you launch a .NET Core application:
The program can't start because api-ms-win-crt-runtime-l1-1-0.dll is missing from your computer. Try
reinstalling the program to fix this problem.

For Windows 7 or Windows Server 2008 R2:

In addition to KB2999226, make sure you also have KB2533623 installed. If you don't have this update installed, you'll see
an error similar to the following when you launch a .NET Core application:
The library hostfxr.dll was found, but loading it from C:\<path_to_app>\hostfxr.dll failed .

Even though you can use any editor to develop .NET Core applications using the .NET Core SDK, Visual Studio
2017 and later versions provide an integrated development environment for .NET Core apps on Windows.

https://github.com/dotnet/docs/blob/master/docs/core/windows-prerequisites.md
https://www.visualstudio.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2019
https://code.visualstudio.com/
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1-supported-os.md
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download/archives#dotnet-core
https://www.microsoft.com/download/details.aspx?id=52685
https://support.microsoft.com/help/2999226/update-for-universal-c-runtime-in-windows
https://support.microsoft.com/help/2533623/microsoft-security-advisory-insecure-library-loading-could-allow-remot

.NET CORE SDK VERSION VISUAL STUDIO VERSION

3.0 Visual Studio 2019 version 16.3 or higher.

2.2 Visual Studio 2017 version 15.9 or higher.

2.1 Visual Studio 2017 version 15.7 or higher.

1.x Visual Studio 2017 version 15.0 or higher.

 Each .NET Core version has a minimum version of Visual Studio required. To verify your Visual Studio version:

On the Help menu, choose About Microsoft Visual Studio.
In the About Microsoft Visual Studio dialog, verify the version number.

The following table lists the minimum version for each SDK:

.NET Core 3.0

.NET Core 2.x

To develop .NET Core apps in Visual Studio 2019 using the .NET Core 3.0 SDK:

Download and install Visual Studio 2019 version 16.3 or higher and select one of the following workloads
that includes the .NET Core SDK, depending on the kind of application you're building:

The .NET Core cross-platform development workload in the Other Toolsets section.
The ASP.NET and web development workload in the Web & Cloud section.
The NET desktop development workload in the Windows section.

The following image shows the .NET Core cross-platform development workload selected in the Visual Studio
UI:

Visual Studio 2019 version 16.3 uses .NET Core 3.0 SDK by default after any of these workloads are installed.

If you want your existing projects to use the latest .NET Core runtime, retarget each existing .NET Core project to
.NET Core 3.0 using the following instructions:

https://docs.microsoft.com/visualstudio/install/install-visual-studio

On the Project menu, choose Properties.
In the Target framework selection menu, set the value to .NET Core 3.0.

Once you have Visual Studio configured with .NET Core 3.0 SDK, you can do the following actions:

Open, build, and run existing .NET Core 1.x and 2.x projects.
Retarget .NET Core 1.x and 2.x projects to .NET Core 3.0, build, and run.
Create new .NET Core 3.0 projects.

Prerequisites for .NET Core on macOS
11/12/2019 • 2 minutes to read • Edit Online

Downloads and dependencies

libgdiplus

brew update
brew install mono-libgdiplus

Visual Studio for Mac

This article shows you the supported macOS versions and .NET Core dependencies that you need to develop,
deploy, and run .NET Core applications on macOS machines. The supported OS versions and dependencies that
follow apply to the three ways of developing .NET Core apps on a Mac: via the command-line with your favorite
editor, Visual Studio Code, and Visual Studio for Mac.

.NET Core 3.0

.NET Core 2.2

.NET Core 2.1

.NET Core 3.0 is supported on macOS High Sierra (version 10.13) and later versions. A x64 CPU architecture is
required.

Download and install the .NET Core SDK from the .NET Core 3.0 downloads page. .NET Core 3.0 Supported OS
Versions for the complete list of .NET Core 3.0 supported operating systems, distributions and versions, out of
support OS versions, and lifecycle policy links.

For a list of known issues, see .NET Core known issues.

.NET Core applications that use the System.Drawing.Common assembly require libgdiplus to be installed.

An easy way to obtain libgdiplus is by using the Homebrew ("brew") package manager for macOS. After installing
brew, install libgdiplus by executing the following commands at a Terminal (command) prompt:

You can use any editor to develop .NET Core applications using the .NET Core SDK. However, if you want to
develop .NET Core applications on a Mac in an integrated development environment, you can use Visual Studio
for Mac.

https://github.com/dotnet/docs/blob/master/docs/core/macos-prerequisites.md
https://code.visualstudio.com/
https://visualstudio.microsoft.com/vs/mac/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-known-issues.md
https://brew.sh/
https://visualstudio.microsoft.com/vs/mac/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link

Prerequisites for .NET Core on Linux
10/17/2019 • 4 minutes to read • Edit Online

NOTE

Supported Linux versions

NOTE

OS VERSION ARCHITECTURES

Red Hat Enterprise Linux 6+, 7 x64

Oracle Linux 7 x64

CentOS 7 x64

Fedora 29+ x64

Debian 9+ x64, ARM32, ARM64

Ubuntu 16.04+ x64, ARM32, ARM64

This article shows the dependencies needed to develop .NET Core applications on Linux. The supported Linux
distributions/versions, and dependencies that follow apply to the two ways of developing .NET Core apps on
Linux:

Command-line with your favorite editor
Visual Studio Code

The .NET Core SDK package is not required for production servers/environments. Only the .NET Core runtime package is
needed for apps deployed to production environments. The .NET Core runtime is deployed with apps as part of a self-
contained deployment, however, it must be deployed for Framework-dependent deployed apps separately. For more
information about framework-dependent and self-contained deployment types, see .NET Core application deployment. Also
see Self-contained Linux applications for specific guidelines.

.NET Core 3.0

.NET Core 2.2

.NET Core 2.1

.NET Core 3.0 treats Linux as a single operating system. There is a single Linux build (per chip architecture) for
supported Linux distributions.

For download links and more information, see .NET Core 3.0 downloads.

.NET Core 3.0 is supported on the following Linux distributions/versions):

A + symbol represents the minimum version.

https://github.com/dotnet/docs/blob/master/docs/core/linux-prerequisites.md
https://code.visualstudio.com/
https://github.com/dotnet/core/blob/master/Documentation/self-contained-linux-apps.md
https://dotnet.microsoft.com/download/dotnet-core/3.0

Linux Mint 18+ x64

openSUSE 15+ x64

SUSE Enterprise Linux (SLES) 12 SP2+ x64

Alpine Linux 3.8+ x64, ARM64

OS VERSION ARCHITECTURES

Linux distribution dependencies

Ubuntu

NOTE

CentOS and Fedora

See .NET Core 3.0 Supported OS Versions for the complete list of .NET Core 3.0 supported operating systems,
distributions and versions, out of support OS versions, and lifecycle policy links.

For more information about how to install .NET Core 3.0 on ARM64, see Installing .NET Core 3.0 on Linux
ARM64.

The following are intended to be examples. The exact versions and names may vary slightly on your Linux
distribution of choice.

Ubuntu distributions require the following libraries installed:

liblttng-ust0
libcurl3 (for 14.x and 16.x)
libcurl4 (for 18.x)
libssl1.0.0
libkrb5-3
zlib1g
libicu52 (for 14.x)
libicu55 (for 16.x)
libicu57 (for 17.x)
libicu60 (for 18.x)

For versions earlier than .NET Core 2.1, following dependencies are also required:

libunwind8
libuuid1

For .NET Core applications that use the System.Drawing.Common assembly, you also need the following
dependency:

libgdiplus (version 6.0.1 or later)

Most versions of Ubuntu include an earlier version of libgdiplus. You can install a recent version of libgdiplus by adding the
Mono repository to your system. For more information, see https://www.mono-project.com/download/stable/.

CentOS distributions require the following libraries installed:

lttng-ust

https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://gist.github.com/richlander/467813274cea8abc624553ee72b28213
https://www.mono-project.com/download/stable/

NOTE

Installing .NET Core dependencies with the native installers

Scripting Installs with the .NET Core installer script

./dotnet-install.sh -c Current

Troubleshoot

libcurl
openssl-libs
krb5-libs
libicu
zlib

Fedora users: If your openssl's version >= 1.1, you'll need to install compat-openssl10.

For versions earlier than .NET Core 2.1, following dependencies are also required:

libunwind
libuuid

For more information about the dependencies, see Self-contained Linux applications.

For .NET Core applications that use the System.Drawing.Common assembly, you'll also need the following
dependency:

libgdiplus (version 6.0.1 or later)

Most versions of CentOS and Fedora include an earlier version of libgdiplus. You can install a recent version of libgdiplus by
adding the Mono repository to your system. For more information, see https://www.mono-project.com/download/stable/.

.NET Core native installers are available for supported Linux distributions/versions. The native installers require
admin (sudo) access to the server. The advantage of using a native installer is that all of the .NET Core native
dependencies are installed. Native installers also install the .NET Core SDK system-wide.

On Linux, there are two installer package choices:

Using a feed-based package manager, such as apt-get for Ubuntu, or yum for CentOS/RHEL.
Using the packages themselves, DEB or RPM.

The dotnet-install scripts are used to perform a non-admin install of the CLI toolchain and the shared runtime. You
can download the script from https://dot.net/v1/dotnet-install.sh.

The script defaults to installing the latest "LTS" version, which is currently .NET Core 1.1. To install .NET Core 2.1,
run the script with the following switch:

The installer bash script is used in automation scenarios and non-admin installations. This script also reads
PowerShell switches, so they can be used with the script on Linux/OS X systems.

If you have problems with a .NET Core installation on a supported Linux distribution/version, consult the
following topics for your installed distributions/versions:

.NET Core 3.0 known issues

.NET Core 2.2 known issues

https://github.com/dotnet/core/blob/master/Documentation/self-contained-linux-apps.md
https://www.mono-project.com/download/stable/
https://dot.net/v1/dotnet-install.sh
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/2.2

.NET Core 2.1 known issues

.NET Core 1.1 known issues

.NET Core 1.0 known issues

https://github.com/dotnet/core/tree/master/release-notes/2.1
https://github.com/dotnet/core/blob/master/release-notes/1.1
https://github.com/dotnet/core/blob/master/release-notes/1.0

What's new in .NET Core 3.0
11/12/2019 • 20 minutes to read • Edit Online

Language improvements C# 8.0

.NET Standard 2.1

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.1</TargetFramework>
 </PropertyGroup>

</Project>

Compile/Deploy
Default executables

This article describes what is new in .NET Core 3.0. One of the biggest enhancements is support for Windows
desktop applications (Windows only). By using the .NET Core 3.0 SDK component Windows Desktop, you can port
your Windows Forms and Windows Presentation Foundation (WPF) applications. To be clear, the Windows
Desktop component is only supported and included on Windows. For more information, see the Windows desktop
section later in this article.

.NET Core 3.0 adds support for C# 8.0. It's highly recommended that you use Visual Studio 2019 version 16.3 or
newer, Visual Studio for Mac 8.3 or newer, or Visual Studio Code with the latest C# extension.

Download and get started with .NET Core 3.0 right now on Windows, macOS, or Linux.

For more information about the release, see the .NET Core 3.0 announcement.

.NET Core RC1 was considered production ready by Microsoft and was fully supported. If you're using a preview
release, you must move to the RTM version for continued support.

C# 8.0 is also part of this release, which includes the nullable reference types feature, async streams, and more
patterns. For more information about C# 8.0 features, see What's new in C# 8.0.

Language enhancements were added to support the following API features detailed below:

Ranges and indices
Async streams

.NET Core 3.0 implements .NET Standard 2.1. However, the default dotnet new classlib template generates a
project that still targets .NET Standard 2.0. To target .NET Standard 2.1, edit your project file and change the
TargetFramework property to netstandard2.1 :

If you're using Visual Studio, you need Visual Studio 2019, as Visual Studio 2017 doesn't support .NET Standard
2.1 or .NET Core 3.0.

.NET Core now builds framework-dependent executables by default. This behavior is new for applications that use
a globally installed version of .NET Core. Previously, only self-contained deployments would produce an
executable.

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/dotnet-core-3-0.md
https://visualstudio.microsoft.com/vs/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://docs.microsoft.com/visualstudio/mac/install-preview
https://code.visualstudio.com/
https://aka.ms/netcore3download
https://devblogs.microsoft.com/dotnet/announcing-net-core-3-0/
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/nullable-reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/pattern-matching
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-8
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019

Single-file executables

<PropertyGroup>
 <RuntimeIdentifier>win10-x64</RuntimeIdentifier>
 <PublishSingleFile>true</PublishSingleFile>
</PropertyGroup>

dotnet publish -r win10-x64 -p:PublishSingleFile=true

Assembly linking

<PropertyGroup>
 <PublishTrimmed>true</PublishTrimmed>
</PropertyGroup>

dotnet publish -r <rid> -c Release

During dotnet build or dotnet publish , an executable is created that matches the environment and platform of
the SDK you're using. You can expect the same things with these executables as you would other native
executables, such as:

You can double-click on the executable.
You can launch the application from a command prompt directly, such as myapp.exe on Windows, and ./myapp

on Linux and macOS.

The dotnet publish command supports packaging your app into a platform-specific single-file executable. The
executable is self-extracting and contains all dependencies (including native) that are required to run your app.
When the app is first run, the application is extracted to a directory based on the app name and build identifier.
Startup is faster when the application is run again. The application doesn't need to extract itself a second time
unless a new version was used.

To publish a single-file executable, set the PublishSingleFile in your project or on the command line with the
dotnet publish command:

-or-

For more information about single-file publishing, see the single-file bundler design document.

The .NET core 3.0 SDK comes with a tool that can reduce the size of apps by analyzing IL and trimming unused
assemblies.

Self-contained apps include everything needed to run your code, without requiring .NET to be installed on the host
computer. However, many times the app only requires a small subset of the framework to function, and other
unused libraries could be removed.

.NET Core now includes a setting that will use the IL linker tool to scan the IL of your app. This tool detects what
code is required, and then trims unused libraries. This tool can significantly reduce the deployment size of some
apps.

To enable this tool, add the <PublishTrimmed> setting in your project and publish a self-contained app:

As an example, the basic "hello world" new console project template that is included, when published, hits about 70
MB in size. By using <PublishTrimmed> , that size is reduced to about 30 MB.

It's important to consider that applications or frameworks (including ASP.NET Core and WPF) that use reflection
or related dynamic features, will often break when trimmed. This breakage occurs because the linker doesn't know

https://github.com/dotnet/designs/blob/master/accepted/single-file/design.md
https://github.com/mono/linker

Tiered compilation

<PropertyGroup>
 <TieredCompilationQuickJit>false</TieredCompilationQuickJit>
</PropertyGroup>

<PropertyGroup>
 <TieredCompilation>false</TieredCompilation>
</PropertyGroup>

ReadyToRun images

about this dynamic behavior and can't determine which framework types are required for reflection. The IL Linker
tool can be configured to be aware of this scenario.

Above all else, be sure to test your app after trimming.

For more information about the IL Linker tool, see the documentation or visit the mono/linker repo.

Tiered compilation (TC) is on by default with .NET Core 3.0. This feature enables the runtime to more adaptively
use the Just-In-Time (JIT) compiler to get better performance.

The main benefit of TC is to enable (re-)jitting methods with a lower-quality-but-faster tier or a higher-quality-but-
slower tier. This helps increase performance of an application as it goes through various stages of execution, from
startup through steady-state. This contrasts with the non-TC approach, where every method is compiled a single
way (the same as the high-quality tier), which is biased to steady-state over startup performance.

When TC is enabled, during startup for a method that is called:

If the method has AOT-compiled code (ReadyToRun), the pregenerated code will be used.
Otherwise, the method will be jitted. Typically, these methods currently are generics over value types.

Quick JIT produces lower-quality code more quickly. Quick JIT is enabled by default in .NET Core 3.0 for
methods that do not contain loops and is preferred during startup.
The fully-optimizing JIT produces higher-quality code more slowly. For methods where Quick JIT would
not be used (for example, if the method is attributed with
[MethodImpl(MethodImplOptions.AggressiveOptimization)]), the fully-optimizing JIT is used.

Eventually, after methods are called a number of times, they are re-jitted with the fully-optimizing JIT in the
background.

Code generated by Quick JIT may run slower, allocate more memory, or use more stack space. If there are issues,
Quick JIT may be disabled using this setting in your project file:

To disable TC completely, use this setting in your project file:

Any changes to the above settings in the project file may require a clean build to be reflected (delete the obj and
bin directories and rebuild).

You can improve the startup time of your .NET Core application by compiling your application assemblies as
ReadyToRun (R2R) format. R2R is a form of ahead-of-time (AOT) compilation.

R2R binaries improve startup performance by reducing the amount of work the just-in-time (JIT) compiler needs
to do as your application loads. The binaries contain similar native code compared to what the JIT would produce.
However, R2R binaries are larger because they contain both intermediate language (IL) code, which is still needed
for some scenarios, and the native version of the same code. R2R is only available when you publish a self-
contained app that targets specific runtime environments (RID) such as Linux x64 or Windows x64.

To compile your project as ReadyToRun, do the following:

https://aka.ms/dotnet-illink
https://github.com/mono/linker
https://devblogs.microsoft.com/dotnet/tiered-compilation-preview-in-net-core-2-1/

Cross platform/architecture restrictions

Runtime/SDK
Major-version Roll Forward

<PropertyGroup>
 <PublishReadyToRun>true</PublishReadyToRun>
</PropertyGroup>

dotnet publish -c Release -r win-x64 --self-contained

1. Add the <PublishReadyToRun> setting to your project:

2. Publish a self-contained app. For example, this command creates a self-contained app for the 64-bit version
of Windows:

The ReadyToRun compiler doesn't currently support cross-targeting. You must compile on a given target. For
example, if you want R2R images for Windows x64, you need to run the publish command on that environment.

Exceptions to cross-targeting:

Windows x64 can be used to compile Windows ARM32, ARM64, and x86 images.
Windows x86 can be used to compile Windows ARM32 images.
Linux x64 can be used to compile Linux ARM32 and ARM64 images.

.NET Core 3.0 introduces an opt-in feature that allows your app to roll forward to the latest major version of .NET
Core. Additionally, a new setting has been added to control how roll forward is applied to your app. This can be
configured in the following ways:

Project file property: RollForward

Runtime configuration file property: rollForward

Environment variable: DOTNET_ROLL_FORWARD

Command-line argument: --roll-forward

One of the following values must be specified. If the setting is omitted, Minor is the default.

LatestPatch
Roll forward to the highest patch version. This disables minor version roll forward.
Minor
Roll forward to the lowest higher minor version, if requested minor version is missing. If the requested minor
version is present, then the LatestPatch policy is used.
Major
Roll forward to lowest higher major version, and lowest minor version, if requested major version is missing. If
the requested major version is present, then the Minor policy is used.
LatestMinor
Roll forward to highest minor version, even if requested minor version is present. Intended for component
hosting scenarios.
LatestMajor
Roll forward to highest major and highest minor version, even if requested major is present. Intended for
component hosting scenarios.
Disable
Don't roll forward. Only bind to specified version. This policy isn't recommended for general use because it
disables the ability to roll forward to the latest patches. This value is only recommended for testing.

Build copies dependencies

Local tools

WARNING

Smaller Garbage Collection heap sizes

Garbage Collection Large Page support

Windows Desktop & COM
.NET Core SDK Windows Installer

Windows desktop

Besides the Disable setting, all settings will use the highest available patch version.

The dotnet build command now copies NuGet dependencies for your application from the NuGet cache to the
build output folder. Previously, dependencies were only copied as part of dotnet publish .

There are some operations, like linking and razor page publishing that will still require publishing.

.NET Core 3.0 introduces local tools. Local tools are similar to global tools but are associated with a particular
location on disk. Local tools aren't available globally and are distributed as NuGet packages.

If you tried local tools in .NET Core 3.0 Preview 1, such as running dotnet tool restore or dotnet tool install , delete
the local tools cache folder. Otherwise, local tools won't work on any newer release. This folder is located at:

On macOS, Linux: rm -r $HOME/.dotnet/toolResolverCache

On Windows: rmdir /s %USERPROFILE%\.dotnet\toolResolverCache

Local tools rely on a manifest file name dotnet-tools.json in your current directory. This manifest file defines the
tools to be available at that folder and below. You can distribute the manifest file with your code to ensure that
anyone who works with your code can restore and use the same tools.

For both global and local tools, a compatible version of the runtime is required. Many tools currently on NuGet.org
target .NET Core Runtime 2.1. To install these tools globally or locally, you would still need to install the NET Core
2.1 Runtime.

The Garbage Collector's default heap size has been reduced resulting in .NET Core using less memory. This change
better aligns with the generation 0 allocation budget with modern processor cache sizes.

Large Pages (also known as Huge Pages on Linux) is a feature where the operating system is able to establish
memory regions larger than the native page size (often 4K) to improve performance of the application requesting
these large pages.

The Garbage Collector can now be configured with the GCLargePages setting as an opt-in feature to choose to
allocate large pages on Windows.

The MSI installer for Windows has changed starting with .NET Core 3.0. The SDK installers will now upgrade SDK
feature-band releases in place. Feature bands are defined in the hundreds groups in the patch section of the
version number. For example, 3.0.101 and 3.0.201 are versions in two different feature bands while 3.0.101 and
3.0.199 are in the same feature band. And, when .NET Core SDK 3.0.101 is installed, .NET Core SDK 3.0.100 will
be removed from the machine if it exists. When .NET Core SDK 3.0.200 is installed on the same machine, .NET
Core SDK 3.0.101 won't be removed.

For more information about versioning, see Overview of how .NET Core is versioned.

.NET Core 3.0 supports Windows desktop applications using Windows Presentation Foundation (WPF) and
Windows Forms. These frameworks also support using modern controls and Fluent styling from the Windows UI

https://dotnet.microsoft.com/download/dotnet-core/2.1

dotnet new wpf
dotnet new winforms

WinForms high DPI

Create COM components

Windows Native Interop

MSIX Deployment

<RuntimeIdentifiers>win-x86;win-x64</RuntimeIdentifiers>

Linux improvements

XAML Library (WinUI) via XAML islands.

The Windows Desktop component is part of the Windows .NET Core 3.0 SDK.

You can create a new WPF or Windows Forms app with the following dotnet commands:

Visual Studio 2019 adds New Project templates for .NET Core 3.0 Windows Forms and WPF.

For more information about how to port an existing .NET Framework application, see Port WPF projects and Port
Windows Forms projects.

.NET Core Windows Forms applications can set high DPI mode with Application.SetHighDpiMode(HighDpiMode).
The SetHighDpiMode method sets the corresponding high DPI mode unless the setting has been set by other means
like App.Manifest or P/Invoke before Application.Run .

The possible highDpiMode values, as expressed by the System.Windows.Forms.HighDpiMode enum are:

DpiUnaware

SystemAware

PerMonitor

PerMonitorV2

DpiUnawareGdiScaled

For more information about high DPI modes, see High DPI Desktop Application Development on Windows.

On Windows, you can now create COM-callable managed components. This capability is critical to use .NET Core
with COM add-in models and also to provide parity with .NET Framework.

Unlike .NET Framework where the mscoree.dll was used as the COM server, .NET Core will add a native launcher
dll to the bin directory when you build your COM component.

For an example of how to create a COM component and consume it, see the COM Demo.

Windows offers a rich native API in the form of flat C APIs, COM, and WinRT. While .NET Core supports
P/Invoke, .NET Core 3.0 adds the ability to CoCreate COM APIs and Activate WinRT APIs. For a code
example, see the Excel Demo.

MSIX is a new Windows application package format. It can be used to deploy .NET Core 3.0 desktop applications
to Windows 10.

The Windows Application Packaging Project, available in Visual Studio 2019, allows you to create MSIX packages
with self-contained .NET Core applications.

The .NET Core project file must specify the supported runtimes in the <RuntimeIdentifiers> property:

https://docs.microsoft.com/windows/uwp/xaml-platform/xaml-host-controls
https://docs.microsoft.com/en-us/dotnet/desktop-wpf/migration/convert-project-from-net-framework
https://docs.microsoft.com/dotnet/api/system.windows.forms.application.sethighdpimode#System_Windows_Forms_Application_SetHighDpiMode_System_Windows_Forms_HighDpiMode_
https://docs.microsoft.com/dotnet/api/system.windows.forms.highdpimode
https://docs.microsoft.com/windows/desktop/hidpi/high-dpi-desktop-application-development-on-windows
https://github.com/dotnet/samples/tree/master/core/extensions/COMServerDemo
https://github.com/dotnet/samples/tree/master/core/extensions/ExcelDemo
https://docs.microsoft.com/windows/msix/
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-packaging-dot-net

SerialPort for Linux

Docker and cgroup memory Limits

GPIO Support for Raspberry Pi

ARM64 Linux support

NOTE

Security
TLS 1.3 & OpenSSL 1.1.1 on Linux

IMPORTANT

.NET Core 3.0 provides basic support for System.IO.Ports.SerialPort on Linux.

Previously, .NET Core only supported using SerialPort on Windows.

For more information about the limited support for the serial port on Linux, see GitHub issue #33146.

Running .NET Core 3.0 on Linux with Docker works better with cgroup memory limits. Running a Docker
container with memory limits, such as with docker run -m , changes how .NET Core behaves.

Default Garbage Collector (GC) heap size: maximum of 20 mb or 75% of the memory limit on the container.
Explicit size can be set as an absolute number or percentage of cgroup limit.
Minimum reserved segment size per GC heap is 16 mb. This size reduces the number of heaps that are created
on machines.

Two packages have been released to NuGet that you can use for GPIO programming:

System.Device.Gpio
Iot.Device.Bindings

The GPIO packages include APIs for GPIO, SPI, I2C, and PWM devices. The IoT bindings package includes device
bindings. For more information, see the devices GitHub repo.

.NET Core 3.0 adds support for ARM64 for Linux. The primary use case for ARM64 is currently with IoT scenarios.
For more information, see .NET Core ARM64 Status.

Docker images for .NET Core on ARM64 are available for Alpine, Debian, and Ubuntu.

ARM64 Windows support isn't yet available.

.NET Core now takes advantage of TLS 1.3 support in OpenSSL 1.1.1 , when it's available in a given environment.
With TLS 1.3:

Connection times are improved with reduced round trips required between the client and server.
Improved security because of the removal of various obsolete and insecure cryptographic algorithms.

When available, .NET Core 3.0 uses OpenSSL 1.1.1, OpenSSL 1.1.0, or OpenSSL 1.0.2 on a Linux system. When
OpenSSL 1.1.1 is available, both System.Net.Security.SslStream and System.Net.Http.HttpClient types will use
TLS 1.3 (assuming both the client and server support TLS 1.3).

Windows and macOS do not yet support TLS 1.3. .NET Core 3.0 will support TLS 1.3 on these operating systems when
support becomes available.

The following C# 8.0 example demonstrates .NET Core 3.0 on Ubuntu 18.10 connecting to
https://www.cloudflare.com:

https://docs.microsoft.com/dotnet/api/system.io.ports.serialport
https://github.com/dotnet/corefx/issues/33146
https://www.nuget.org/packages/System.Device.Gpio
https://www.nuget.org/packages/Iot.Device.Bindings
https://github.com/dotnet/iot/blob/master/src/devices/
https://github.com/dotnet/announcements/issues/82
https://hub.docker.com/r/microsoft/dotnet/
https://www.openssl.org/blog/blog/2018/09/11/release111/
https://docs.microsoft.com/dotnet/api/system.net.security.sslstream
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://www.cloudflare.com

using System;
using System.Net.Security;
using System.Net.Sockets;
using System.Threading.Tasks;

namespace whats_new
{
 public static class TLS
 {
 public static async Task ConnectCloudFlare()
 {
 var targetHost = "www.cloudflare.com";

 using TcpClient tcpClient = new TcpClient();

 await tcpClient.ConnectAsync(targetHost, 443);

 using SslStream sslStream = new SslStream(tcpClient.GetStream());

 await sslStream.AuthenticateAsClientAsync(targetHost);
 await Console.Out.WriteLineAsync($"Connected to {targetHost} with {sslStream.SslProtocol}");
 }
 }
}

Cryptography ciphers
.NET 3.0 adds support for AES-GCM and AES-CCM ciphers, implemented with
System.Security.Cryptography.AesGcm and System.Security.Cryptography.AesCcm respectively. These algorithms
are both Authenticated Encryption with Association Data (AEAD) algorithms.

The following code demonstrates using AesGcm cipher to encrypt and decrypt random data.

https://docs.microsoft.com/dotnet/api/system.security.cryptography.aesgcm
https://docs.microsoft.com/dotnet/api/system.security.cryptography.aesccm
https://en.wikipedia.org/wiki/Authenticated_encryption

using System;
using System.Linq;
using System.Security.Cryptography;

namespace whats_new
{
 public static class Cipher
 {
 public static void Run()
 {
 // key should be: pre-known, derived, or transported via another channel, such as RSA encryption
 byte[] key = new byte[16];
 RandomNumberGenerator.Fill(key);

 byte[] nonce = new byte[12];
 RandomNumberGenerator.Fill(nonce);

 // normally this would be your data
 byte[] dataToEncrypt = new byte[1234];
 byte[] associatedData = new byte[333];
 RandomNumberGenerator.Fill(dataToEncrypt);
 RandomNumberGenerator.Fill(associatedData);

 // these will be filled during the encryption
 byte[] tag = new byte[16];
 byte[] ciphertext = new byte[dataToEncrypt.Length];

 using (AesGcm aesGcm = new AesGcm(key))
 {
 aesGcm.Encrypt(nonce, dataToEncrypt, ciphertext, tag, associatedData);
 }

 // tag, nonce, ciphertext, associatedData should be sent to the other part

 byte[] decryptedData = new byte[ciphertext.Length];

 using (AesGcm aesGcm = new AesGcm(key))
 {
 aesGcm.Decrypt(nonce, ciphertext, tag, decryptedData, associatedData);
 }

 // do something with the data
 // this should always print that data is the same
 Console.WriteLine($"AES-GCM: Decrypted data is {(dataToEncrypt.SequenceEqual(decryptedData) ? "the
same as" : "different than")} original data.");
 }
 }
}

Cryptographic Key Import/Export
.NET Core 3.0 supports the import and export of asymmetric public and private keys from standard formats. You
don't need to use an X.509 certificate.

All key types, such as RSA, DSA, ECDsa, and ECDiffieHellman, support the following formats:

Public Key

X.509 SubjectPublicKeyInfo
Private key

PKCS#8 PrivateKeyInfo
PKCS#8 EncryptedPrivateKeyInfo

RSA keys also support:

using System;
using System.Security.Cryptography;

namespace whats_new
{
 public static class RSATest
 {
 public static void Run(string keyFile)
 {
 using var rsa = RSA.Create();

 byte[] keyBytes = System.IO.File.ReadAllBytes(keyFile);
 rsa.ImportRSAPrivateKey(keyBytes, out int bytesRead);

 Console.WriteLine($"Read {bytesRead} bytes, {keyBytes.Length - bytesRead} extra byte(s) in file.");
 RSAParameters rsaParameters = rsa.ExportParameters(true);
 Console.WriteLine(BitConverter.ToString(rsaParameters.D));
 }
 }
}

.NET Core 3.0 API changes
Ranges and indices

Index i1 = 3; // number 3 from beginning
Index i2 = ^4; // number 4 from end
int[] a = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
Console.WriteLine($"{a[i1]}, {a[i2]}"); // "3, 6"

var slice = a[i1..i2]; // { 3, 4, 5 }

Async streams

Public Key

PKCS#1 RSAPublicKey
Private key

PKCS#1 RSAPrivateKey

The export methods produce DER-encoded binary data, and the import methods expect the same. If a key is stored
in the text-friendly PEM format, the caller will need to base64-decode the content before calling an import method.

PKCS#8 files can be inspected with System.Security.Cryptography.Pkcs.Pkcs8PrivateKeyInfo and PFX/PKCS#12
files can be inspected with System.Security.Cryptography.Pkcs.Pkcs12Info. PFX/PKCS#12 files can be
manipulated with System.Security.Cryptography.Pkcs.Pkcs12Builder.

The new System.Index type can be used for indexing. You can create one from an int that counts from the
beginning, or with a prefix ^ operator (C#) that counts from the end:

There's also the System.Range type, which consists of two Index values, one for the start and one for the end, and
can be written with a x..y range expression (C#). You can then index with a Range , which produces a slice:

For more information, see the ranges and indices tutorial.

The IAsyncEnumerable<T> type is a new asynchronous version of IEnumerable<T>. The language lets you
await foreach over IAsyncEnumerable<T> to consume their elements, and use yield return to them to produce

elements.

https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.pkcs8privatekeyinfo
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.pkcs12info
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.pkcs12builder
https://docs.microsoft.com/dotnet/api/system.index
https://docs.microsoft.com/dotnet/api/system.range
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/ranges-indexes
https://docs.microsoft.com/dotnet/api/system.collections.generic.iasyncenumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1

async IAsyncEnumerable<int> GetBigResultsAsync()
{
 await foreach (var result in GetResultsAsync())
 {
 if (result > 20) yield return result;
 }
}

IEEE Floating-point

The following example demonstrates both production and consumption of async streams. The foreach statement
is async and itself uses yield return to produce an async stream for callers. This pattern (using yield return) is
the recommended model for producing async streams.

In addition to being able to await foreach , you can also create async iterators, for example, an iterator that returns
an IAsyncEnumerable/IAsyncEnumerator that you can both await and yield in. For objects that need to be
disposed, you can use IAsyncDisposable , which various BCL types implement, such as Stream and Timer .

For more information, see the async streams tutorial.

Floating point APIs are being updated to comply with IEEE 754-2008 revision. The goal of these changes is to
expose all required operations and ensure that they're behaviorally compliant with the IEEE spec. For more
information about floating-point improvements, see the Floating-Point Parsing and Formatting improvements in
.NET Core 3.0 blog post.

Parsing and formatting fixes include:

Correctly parse and round inputs of any length.
Correctly parse and format negative zero.
Correctly parse Infinity and NaN by doing a case-insensitive check and allowing an optional preceding +

where applicable.

New System.Math APIs include:

BitIncrement(Double) and BitDecrement(Double)
Corresponds to the nextUp and nextDown IEEE operations. They return the smallest floating-point number
that compares greater or lesser than the input (respectively). For example, Math.BitIncrement(0.0) would
return double.Epsilon .

MaxMagnitude(Double, Double) and MinMagnitude(Double, Double)
Corresponds to the maxNumMag and minNumMag IEEE operations, they return the value that is greater or lesser
in magnitude of the two inputs (respectively). For example, Math.MaxMagnitude(2.0, -3.0) would return
-3.0 .

ILogB(Double)
Corresponds to the logB IEEE operation that returns an integral value, it returns the integral base-2 log of
the input parameter. This method is effectively the same as floor(log2(x)) , but done with minimal
rounding error.

ScaleB(Double, Int32)
Corresponds to the scaleB IEEE operation that takes an integral value, it returns effectively x * pow(2, n) ,
but is done with minimal rounding error.

Log2(Double)
Corresponds to the log2 IEEE operation, it returns the base-2 logarithm. It minimizes rounding error.

FusedMultiplyAdd(Double, Double, Double)
Corresponds to the fma IEEE operation, it performs a fused multiply add. That is, it does (x * y) + z as a

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream
https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://devblogs.microsoft.com/dotnet/floating-point-parsing-and-formatting-improvements-in-net-core-3-0/
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.bitincrement#System_Math_BitIncrement_System_Double_
https://docs.microsoft.com/dotnet/api/system.math.bitdecrement#System_Math_BitDecrement_System_Double_
https://docs.microsoft.com/dotnet/api/system.math.maxmagnitude#System_Math_MaxMagnitude_System_Double_System_Double_
https://docs.microsoft.com/dotnet/api/system.math.minmagnitude#System_Math_MinMagnitude_System_Double_System_Double_
https://docs.microsoft.com/dotnet/api/system.math.ilogb#System_Math_ILogB_System_Double_
https://docs.microsoft.com/dotnet/api/system.math.scaleb#System_Math_ScaleB_System_Double_System_Int32_
https://docs.microsoft.com/dotnet/api/system.math.log2#System_Math_Log2_System_Double_
https://docs.microsoft.com/dotnet/api/system.math.fusedmultiplyadd#System_Math_FusedMultiplyAdd_System_Double_System_Double_System_Double_

.NET Platform-Dependent Intrinsics

Improved .NET Core Version APIs

System.Console.WriteLine($"Environment.Version: {System.Environment.Version}");

// Old result
// Environment.Version: 4.0.30319.42000
//
// New result
// Environment.Version: 3.0.0

System.Console.WriteLine($"RuntimeInformation.FrameworkDescription:
{System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription}");

// Old result
// RuntimeInformation.FrameworkDescription: .NET Core 4.6.27415.71
//
// New result (notice the value includes any preview release information)
// RuntimeInformation.FrameworkDescription: .NET Core 3.0.0-preview4-27615-11

WARNING

Fast built-in JSON support

HTTP/2 support

single operation, thereby minimizing the rounding error. An example would be
FusedMultiplyAdd(1e308, 2.0, -1e308) which returns 1e308 . The regular (1e308 * 2.0) - 1e308 returns
double.PositiveInfinity .

CopySign(Double, Double)
Corresponds to the copySign IEEE operation, it returns the value of x , but with the sign of y .

APIs have been added that allow access to certain perf-oriented CPU instructions, such as the SIMD or Bit
Manipulation instruction sets. These instructions can help achieve significant performance improvements in
certain scenarios, such as processing data efficiently in parallel.

Where appropriate, the .NET libraries have begun using these instructions to improve performance.

For more information, see .NET Platform Dependent Intrinsics.

Starting with .NET Core 3.0, the version APIs provided with .NET Core now return the information you expect. For
example:

Breaking change. This is technically a breaking change because the versioning scheme has changed.

.NET users have largely relied on Json.NET and other popular JSON libraries, which continue to be good choices.
Json.NET uses .NET strings as its base datatype, which is UTF-16 under the hood.

The new built-in JSON support is high-performance, low allocation, and based on Span<byte> . For more
information about the System.Text.Json namespace and types, see JSON serialization in .NET - overview. For
tutorials on common JSON serialization scenarios, see How to serialize and deserialize JSON in .NET.

The System.Net.Http.HttpClient type supports the HTTP/2 protocol. If HTTP/2 is enabled, the HTTP protocol
version is negotiated via TLS/ALPN, and HTTP/2 is used if the server elects to use it.

The default protocol remains HTTP/1.1, but HTTP/2 can be enabled in two different ways. First, you can set the
HTTP request message to use HTTP/2:

https://docs.microsoft.com/dotnet/api/system.math.copysign#System_Math_CopySign_System_Double_System_Double_
https://github.com/dotnet/designs/blob/master/accepted/platform-intrinsics.md
https://www.newtonsoft.com/json
https://docs.microsoft.com/dotnet/api/system.text.json
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-overview
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-how-to
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient

var client = new HttpClient() { BaseAddress = new Uri("https://localhost:5001") };

// HTTP/1.1 request
using (var response = await client.GetAsync("/"))
 Console.WriteLine(response.Content);

// HTTP/2 request
using (var request = new HttpRequestMessage(HttpMethod.Get, "/") { Version = new Version(2, 0) })
using (var response = await client.SendAsync(request))
 Console.WriteLine(response.Content);

var client = new HttpClient()
{
 BaseAddress = new Uri("https://localhost:5001"),
 DefaultRequestVersion = new Version(2, 0)
};

// HTTP/2 is default
using (var response = await client.GetAsync("/"))
 Console.WriteLine(response.Content);

AppContext.SetSwitch("System.Net.Http.SocketsHttpHandler.Http2UnencryptedSupport", true);

Next steps

Second, you can change HttpClient to use HTTP/2 by default:

Many times when you're developing an application, you want to use an unencrypted connection. If you know the
target endpoint will be using HTTP/2, you can turn on unencrypted connections for HTTP/2. You can turn it on by
setting the DOTNET_SYSTEM_NET_HTTP_SOCKETSHTTPHANDLER_HTTP2UNENCRYPTEDSUPPORT environment variable to 1 or by
enabling it in the app context:

Review the breaking changes between .NET Core 2.2 and 3.0.
Review the breaking changes between .NET Framework and .NET Core 3.0.

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/core/compatibility/2.2-3.0
https://docs.microsoft.com/en-us/dotnet/core/compatibility/framework-core

What's new in .NET Core 2.2
10/30/2019 • 4 minutes to read • Edit Online

New deployment mode

Core

.NET Core 2.2 includes enhancements in application deployment, event handling for runtime services,
authentication to Azure SQL databases, J IT compiler performance, and code injection prior to the execution of the
Main method.

Starting with .NET Core 2.2, you can deploy framework-dependent executables, which are .exe files instead of .dll
files. Functionally similar to framework-dependent deployments, framework-dependent executables (FDE) still rely
on the presence of a shared system-wide version of .NET Core to run. Your app contains only your code and any
third-party dependencies. Unlike framework-dependent deployments, FDEs are platform-specific.

This new deployment mode has the distinct advantage of building an executable instead of a library, which means
you can run your app directly without invoking dotnet first.

Handling events in runtime services

You may often want to monitor your application's use of runtime services, such as the GC, JIT, and ThreadPool, to
understand how they impact your application. On Windows systems, this is commonly done by monitoring the
ETW events of the current process. While this continues to work well, it's not always possible to use ETW if you're
running in a low-privilege environment or on Linux or macOS.

Starting with .NET Core 2.2, CoreCLR events can now be consumed using the
System.Diagnostics.Tracing.EventListener class. These events describe the behavior of such runtime services as GC,
JIT, ThreadPool, and interop. These are the same events that are exposed as part of the CoreCLR ETW provider.
This allows for applications to consume these events or use a transport mechanism to send them to a telemetry
aggregation service. You can see how to subscribe to events in the following code sample:

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/dotnet-core-2-2.md
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventlistener

internal sealed class SimpleEventListener : EventListener
{
 // Called whenever an EventSource is created.
 protected override void OnEventSourceCreated(EventSource eventSource)
 {
 // Watch for the .NET runtime EventSource and enable all of its events.
 if (eventSource.Name.Equals("Microsoft-Windows-DotNETRuntime"))
 {
 EnableEvents(eventSource, EventLevel.Verbose, (EventKeywords)(-1));
 }
 }

 // Called whenever an event is written.
 protected override void OnEventWritten(EventWrittenEventArgs eventData)
 {
 // Write the contents of the event to the console.
 Console.WriteLine($"ThreadID = {eventData.OSThreadId} ID = {eventData.EventId} Name =
{eventData.EventName}");
 for (int i = 0; i < eventData.Payload.Count; i++)
 {
 string payloadString = eventData.Payload[i]?.ToString() ?? string.Empty;
 Console.WriteLine($"\tName = \"{eventData.PayloadNames[i]}\" Value = \"{payloadString}\"");
 }
 Console.WriteLine("\n");
 }
}

Data

JIT compiler improvements

In addition, .NET Core 2.2 adds the following two properties to the EventWrittenEventArgs class to provide
additional information about ETW events:

EventWrittenEventArgs.OSThreadId

EventWrittenEventArgs.TimeStamp

AAD authentication to Azure SQL databases with the SqlConnection.AccessToken property

Starting with .NET Core 2.2, an access token issued by Azure Active Directory can be used to authenticate to an
Azure SQL database. To support access tokens, the AccessToken property has been added to the SqlConnection
class. To take advantage of AAD authentication, download version 4.6 of the System.Data.SqlClient NuGet package.
In order to use the feature, you can obtain the access token value using the Active Directory Authentication Library
for .NET contained in the Microsoft.IdentityModel.Clients.ActiveDirectory NuGet package.

Tiered compilation remains an opt-in feature

In .NET Core 2.1, the JIT compiler implemented a new compiler technology, tiered compilation, as an opt-in
feature. The goal of tiered compilation is improved performance. One of the important tasks performed by the JIT
compiler is optimizing code execution. For little-used code paths, however, the compiler may spend more time
optimizing code than the runtime spends executing unoptimized code. Tiered compilation introduces two stages in
JIT compilation:

A first tier, which generates code as quickly as possible.

A second tier, which generates optimized code for those methods that are executed frequently. The second
tier of compilation is performed in parallel for enhanced performance.

For information on the performance improvement that can result from tiered compilation, see Announcing .NET

https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventwritteneventargs
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventwritteneventargs.osthreadid#System_Diagnostics_Tracing_EventWrittenEventArgs_OSThreadId
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventwritteneventargs.timestamp#System_Diagnostics_Tracing_EventWrittenEventArgs_TimeStamp
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnection.accesstoken#System_Data_SqlClient_SqlConnection_AccessToken
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnection
https://github.com/AzureAD/azure-activedirectory-library-for-dotnet
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory/
https://devblogs.microsoft.com/dotnet/announcing-net-core-2-2-preview-2/

Runtime

See also

Core 2.2 Preview 2.

In .NET Core 2.2 Preview 2, tiered compilation was enabled by default. However, we've decided that we are still not
ready to enable tiered compilation by default. So in .NET Core 2.2, tiered compilation continues to be an opt-in
feature. For information on opting in to tiered compilation, see Jit compiler improvements in What's new in .NET
Core 2.1.

Injecting code prior to executing the Main method

Starting with .NET Core 2.2, you can use a startup hook to inject code prior to running an application's Main
method. Startup hooks make it possible for a host to customize the behavior of applications after they have been
deployed without needing to recompile or change the application.

We expect hosting providers to define custom configuration and policy, including settings that potentially influence
the load behavior of the main entry point, such as the System.Runtime.Loader.AssemblyLoadContext behavior. The
hook can be used to set up tracing or telemetry injection, to set up callbacks for handling, or to define other
environment-dependent behavior. The hook is separate from the entry point, so that user code doesn't need to be
modified.

See Host startup hook for more information.

What's new in .NET Core
What's new in ASP.NET Core 2.2
New features in EF Core 2.2

https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/host-startup-hook.md
https://docs.microsoft.com/en-us/dotnet/core/whats-new/index
https://docs.microsoft.com/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/ef/core/what-is-new/ef-core-2.2

What's new in .NET Core 2.1
10/30/2019 • 10 minutes to read • Edit Online

Tooling

Build performance improvements

New CLI commands

.NET Core 2.1 includes enhancements and new features in the following areas:

Tooling
Roll forward
Deployment
Windows Compatibility Pack
JIT compilation improvements
API changes

The .NET Core 2.1 SDK (v 2.1.300), the tooling included with .NET Core 2.1, includes the following changes and
enhancements:

A major focus of .NET Core 2.1 is improving build-time performance, particularly for incremental builds. These
performance improvements apply to both command-line builds using dotnet build and to builds in Visual Studio.
Some individual areas of improvement include:

dotnet buildserver shutdown

For package asset resolution, resolving only assets used by a build rather than all assets.

Caching of assembly references.

Use of long-running SDK build servers, which are processes that span across individual dotnet build

invocations. They eliminate the need to JIT-compile large blocks of code every time dotnet build is run.
Build server processes can be automatically terminated with the following command:

A number of tools that were available only on a per project basis using DotnetCliToolReference are now available
as part of the .NET Core SDK. These tools include:

dotnet watch -- --verbose build

dotnet watch provides a file system watcher that waits for a file to change before executing a designated
set of commands. For example, the following command automatically rebuilds the current project and
generates verbose output whenever a file in it changes:

Note the -- option that precedes the --verbose option. It delimits the options passed directly to the
dotnet watch command from the arguments that are passed to the child dotnet process. Without it, the
--verbose option applies to the dotnet watch command, not the dotnet build command.

For more information, see Develop ASP.NET Core apps using dotnet watch.

dotnet dev-certs generates and manages certificates used during development in ASP.NET Core
applications.

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/dotnet-core-2-1.md
https://docs.microsoft.com/aspnet/core/tutorials/dotnet-watch

Global Tools

dotnet tool install -g dotnetsay

Tool management with the dotnet tool command

Roll forward

IMPORTANT

dotnet user-secrets manages the secrets in a user secret store in ASP.NET Core applications.

dotnet sql-cache creates a table and indexes in a Microsoft SQL Server database to be used for distributed
caching.

dotnet ef is a tool for managing databases, DbContext objects, and migrations in Entity Framework Core
applications. For more information, see EF Core .NET Command-line Tools.

.NET Core 2.1 supports Global Tools -- that is, custom tools that are available globally from the command line. The
extensibility model in previous versions of .NET Core made custom tools available on a per project basis only by
using DotnetCliToolReference .

To install a Global Tool, you use the dotnet tool install command. For example:

Once installed, the tool can be run from the command line by specifying the tool name. For more information, see
.NET Core Global Tools overview.

In .NET Core 2.1 SDK, all tools operations use the dotnet tool command. The following options are available:

dotnet tool install to install a tool.

dotnet tool update to uninstall and reinstall a tool, which effectively updates it.

dotnet tool list to list currently installed tools.

dotnet tool uninstall to uninstall currently installed tools.

All .NET Core applications starting with .NET Core 2.0 automatically roll forward to the latest minor version
installed on a system.

Starting with .NET Core 2.0, if the version of .NET Core that an application was built with is not present at runtime,
the application automatically runs against the latest installed minor version of .NET Core. In other words, if an
application is built with .NET Core 2.0, and .NET Core 2.0 is not present on the host system but .NET Core 2.1 is,
the application runs with .NET Core 2.1.

This roll-forward behavior doesn't apply to preview releases. By default, it also doesn't apply to major releases, but this can
be changed with the settings below.

You can modify this behavior by changing the setting for the roll-forward on no candidate shared framework. The
available settings are:

0 - disable minor version roll-forward behavior. With this setting, an application built for .NET Core 2.0.0 will
roll forward to .NET Core 2.0.1, but not to .NET Core 2.2.0 or .NET Core 3.0.0.
1 - enable minor version roll-forward behavior. This is the default value for the setting. With this setting, an

application built for .NET Core 2.0.0 will roll forward to either .NET Core 2.0.1 or .NET Core 2.2.0, depending
on which one is installed, but it will not roll forward to .NET Core 3.0.0.
2 - enable minor and major version roll-forward behavior. If set, even different major versions are considered,

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet

Deployment
Self-contained application servicing

Windows Compatibility Pack

JIT compiler improvements

so an application built for .NET Core 2.0.0 will roll forward to .NET Core 3.0.0.

You can modify this setting in any of three ways:

"rollForwardOnNoCandidateFx" : 0

dotnet run --rollForwardOnNoCandidateFx=0

Set the DOTNET_ROLL_FORWARD_ON_NO_CANDIDATE_FX environment variable to the desired value.

Add the following line with the desired value to the .runtimeconfig.json file:

When using .NET Core CLI tools, add the following option with the desired value to a .NET Core command
such as run :

Patch version roll forward is independent of this setting and is done after any potential minor or major version roll
forward is applied.

dotnet publish now publishes self-contained applications with a serviced runtime version. When you publish a
self-contained application with the .NET Core 2.1 SDK (v 2.1.300), your application includes the latest serviced
runtime version known by that SDK. When you upgrade to the latest SDK, you’ll publish with the latest .NET Core
runtime version. This applies for .NET Core 1.0 runtimes and later.

Self-contained publishing relies on runtime versions on NuGet.org. You do not need to have the serviced runtime
on your machine.

Using the .NET Core 2.0 SDK, self-contained applications are published with the .NET Core 2.0.0 runtime unless a
different version is specified via the RuntimeFrameworkVersion property. With this new behavior, you’ll no longer
need to set this property to select a higher runtime version for a self-contained application. The easiest approach
going forward is to always publish with .NET Core 2.1 SDK (v 2.1.300).

For more information, see Self-contained deployment runtime roll forward.

When you port existing code from the .NET Framework to .NET Core, you can use the Windows Compatibility
Pack. It provides access to 20,000 more APIs than are available in .NET Core. These APIs include types in the
System.Drawing namespace, the EventLog class, WMI, Performance Counters, Windows Services, and the
Windows registry types and members.

.NET Core incorporates a new JIT compiler technology called tiered compilation (also known as adaptive
optimization) that can significantly improve performance. Tiered compilation is an opt-in setting.

One of the important tasks performed by the JIT compiler is optimizing code execution. For little-used code paths,
however, the compiler may spend more time optimizing code than the runtime spends running unoptimized code.
Tiered compilation introduces two stages in JIT compilation:

A first tier, which generates code as quickly as possible.

A second tier, which generates optimized code for those methods that are executed frequently. The second

https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://docs.microsoft.com/dotnet/api/system.drawing
https://docs.microsoft.com/dotnet/api/system.diagnostics.eventlog

 API changes
Span<T> and Memory<T>

using System;

class Program
{
 static void Main()
 {
 int[] numbers = new int[100];
 for (int i = 0; i < 100; i++)
 {
 numbers[i] = i * 2;
 }

 var part = new Span<int>(numbers, start: 10, length: 10);
 foreach (var value in part)
 Console.Write($"{value} ");
 }
}
// The example displays the following output:
// 20 22 24 26 28 30 32 34 36 38

tier of compilation is performed in parallel for enhanced performance.

You can opt into tiered compilation in either of two ways.

COMPlus_TieredCompilation="1"

<PropertyGroup>
 <!-- other property definitions -->

 <TieredCompilation>true</TieredCompilation>
</PropertyGroup>

To use tiered compilation in all projects that use the .NET Core 2.1 SDK, set the following environment
variable:

To use tiered compilation on a per-project basis, add the <TieredCompilation> property to the
<PropertyGroup> section of the MSBuild project file, as the following example shows:

.NET Core 2.1 includes some new types that make working with arrays and other types of memory much more
efficient. The new types include:

System.Span<T> and System.ReadOnlySpan<T>.

System.Memory<T> and System.ReadOnlyMemory<T>.

Without these types, when passing such items as a portion of an array or a section of a memory buffer, you have
to make a copy of some portion of the data before passing it to a method. These types provide a virtual view of
that data that eliminates the need for the additional memory allocation and copy operations.

The following example uses a Span<T> and Memory<T> instance to provide a virtual view of 10 elements of an
array.

https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.readonlyspan-1
https://docs.microsoft.com/dotnet/api/system.memory-1
https://docs.microsoft.com/dotnet/api/system.readonlymemory-1
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.memory-1

Module Program
 Sub Main()
 Dim numbers As Integer() = New Integer(99) {}

 For i As Integer = 0 To 99
 numbers(i) = i * 2
 Next

 Dim part = New Memory(Of Integer)(numbers, start:=10, length:=10)

 For Each value In part.Span
 Console.Write($"{value} ")
 Next
 End Sub
End Module
' The example displays the following output:
' 20 22 24 26 28 30 32 34 36 38

Brotli compression

public static Stream DecompressWithBrotli(Stream toDecompress)
{
 MemoryStream decompressedStream = new MemoryStream();
 using (BrotliStream decompressionStream = new BrotliStream(toDecompress, CompressionMode.Decompress))
 {
 decompressionStream.CopyTo(decompressedStream);
 }
 decompressedStream.Position = 0;
 return decompressedStream;
}

Public Function DecompressWithBrotli(toDecompress As Stream) As Stream
 Dim decompressedStream As New MemoryStream()
 Using decompressionStream As New BrotliStream(toDecompress, CompressionMode.Decompress)
 decompressionStream.CopyTo(decompressedStream)
 End Using
 decompressedStream.Position = 0
 Return decompressedStream
End Function

New cryptography APIs and cryptography improvements

.NET Core 2.1 adds support for Brotli compression and decompression. Brotli is a general-purpose lossless
compression algorithm that is defined in RFC 7932 and is supported by most web browsers and major web
servers. You can use the stream-based System.IO.Compression.BrotliStream class or the high-performance span-
based System.IO.Compression.BrotliEncoder and System.IO.Compression.BrotliDecoder classes. The following
example illustrates compression with the BrotliStream class:

The BrotliStream behavior is the same as DeflateStream and GZipStream, which makes it easy to convert code
that calls these APIs to BrotliStream.

.NET Core 2.1 includes numerous enhancements to the cryptography APIs:

System.Security.Cryptography.Pkcs.SignedCms is available in the System.Security.Cryptography.Pkcs
package. The implementation is the same as the SignedCms class in the .NET Framework.

New overloads of the X509Certificate.GetCertHash and X509Certificate.GetCertHashString methods accept
a hash algorithm identifier to enable callers to get certificate thumbprint values using algorithms other than
SHA-1.

New Span<T>-based cryptography APIs are available for hashing, HMAC, cryptographic random number

https://www.ietf.org/rfc/rfc7932.txt
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.io.compression.brotliencoder
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlidecoder
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.io.compression.deflatestream
https://docs.microsoft.com/dotnet/api/system.io.compression.gzipstream
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signedcms
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signedcms
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate.getcerthash
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate.getcerthashstring
https://docs.microsoft.com/dotnet/api/system.span-1

Sockets improvements

AppContext.SetSwitch("System.Net.Http.UseSocketsHttpHandler", false);

AppContext.SetSwitch("System.Net.Http.UseSocketsHttpHandler", False)

See also

generation, asymmetric signature generation, asymmetric signature processing, and RSA encryption.

The performance of System.Security.Cryptography.Rfc2898DeriveBytes has improved by about 15% by
using a Span<T>-based implementation.

The new System.Security.Cryptography.CryptographicOperations class includes two new methods:

FixedTimeEquals takes a fixed amount of time to return for any two inputs of the same length, which
makes it suitable for use in cryptographic verification to avoid contributing to timing side-channel
information.

ZeroMemory is a memory-clearing routine that cannot be optimized.

The static RandomNumberGenerator.Fill method fills a Span<T> with random values.

The System.Security.Cryptography.Pkcs.EnvelopedCms is now supported on Linux and macOS.

Elliptic-Curve Diffie-Hellman (ECDH) is now available in the
System.Security.Cryptography.ECDiffieHellman class family. The surface area is the same as in the .NET
Framework.

The instance returned by RSA.Create can encrypt or decrypt with OAEP using a SHA-2 digest, as well as
generate or validate signatures using RSA-PSS.

.NET Core includes a new type, System.Net.Http.SocketsHttpHandler, and a rewritten
System.Net.Http.HttpMessageHandler, that form the basis of higher-level networking APIs.
System.Net.Http.SocketsHttpHandler, for example, is the basis of the HttpClient implementation. In previous
versions of .NET Core, higher-level APIs were based on native networking implementations.

The sockets implementation introduced in .NET Core 2.1 has a number of advantages:

A significant performance improvement when compared with the previous implementation.

Elimination of platform dependencies, which simplifies deployment and servicing.

Consistent behavior across all .NET Core platforms.

SocketsHttpHandler is the default implementation in .NET Core 2.1. However, you can configure your application
to use the older HttpClientHandler class by calling the AppContext.SetSwitch method:

You can also use an environment variable to opt out of using sockets implementations based on
SocketsHttpHandler. To do this, set the DOTNET_SYSTEM_NET_HTTP_USESOCKETSHTTPHANDLER to either false or 0.

On Windows, you can also choose to use System.Net.Http.WinHttpHandler, which relies on a native
implementation, or the SocketsHttpHandler class by passing an instance of the class to the HttpClient constructor.

On Linux and macOS, you can only configure HttpClient on a per-process basis. On Linux, you need to deploy
libcurl if you want to use the old HttpClient implementation. (It is installed with .NET Core 2.0.)

What's new in .NET Core
New features in EF Core 2.1

https://docs.microsoft.com/dotnet/api/system.security.cryptography.rfc2898derivebytes
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptographicoperations
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptographicoperations.fixedtimeequals
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptographicoperations.zeromemory
https://docs.microsoft.com/dotnet/api/system.security.cryptography.randomnumbergenerator.fill
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.envelopedcms
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa.create
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclienthandler
https://docs.microsoft.com/dotnet/api/system.appcontext.setswitch
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.winhttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://curl.haxx.se/libcurl/
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/core/whats-new/index
https://docs.microsoft.com/ef/core/what-is-new/ef-core-2.1

What's new in ASP.NET Core 2.1

https://docs.microsoft.com/aspnet/core/aspnetcore-2.1

What's new in .NET Core 2.0
10/30/2019 • 6 minutes to read • Edit Online

Tooling
dotnet restore runs implicitly

NOTE

Retargeting to .NET Core 2.0

<PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

<PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

.NET Core 2.0 includes enhancements and new features in the following areas:

Tooling
Language support
Platform improvements
API changes
Visual Studio integration
Documentation improvements

In previous versions of .NET Core, you had to run the dotnet restore command to download dependencies
immediately after you created a new project with the dotnet new command, as well as whenever you added a new
dependency to your project.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

You can also disable the automatic invocation of dotnet restore by passing the --no-restore switch to the new ,
run , build , publish , pack , and test commands.

If the .NET Core 2.0 SDK is installed, projects that target .NET Core 1.x can be retargeted to .NET Core 2.0.

To retarget to .NET Core 2.0, edit your project file by changing the value of the <TargetFramework> element (or the
<TargetFrameworks> element if you have more than one target in your project file) from 1.x to 2.0:

You can also retarget .NET Standard libraries to .NET Standard 2.0 the same way:

For more information about migrating your project to .NET Core 2.0, see Migrating from ASP.NET Core 1.x to
ASP.NET Core 2.0.

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/dotnet-core-2-0.md
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/aspnet/core/migration/1x-to-2x/index

Language support

Visual Basic

Support for C# 7.1

Platform improvements

.NET Core for Linux is a single implementation

Support for the Apple cryptographic libraries

API changes and library support
Support for .NET Standard 2.0

In addition to supporting C# and F#, .NET Core 2.0 also supports Visual Basic.

With version 2.0, .NET Core now supports Visual Basic 2017. You can use Visual Basic to create the following
project types:

.NET Core console apps

.NET Core class libraries

.NET Standard class libraries

.NET Core unit test projects

.NET Core xUnit test projects

For example, to create a Visual Basic "Hello World" application, do the following steps from the command line:

1. Open a console window, create a directory for your project, and make it the current directory.

2. Enter the command dotnet new console -lang vb .

The command creates a project file with a .vbproj file extension, along with a Visual Basic source code file
named Program.vb. This file contains the source code to write the string "Hello World!" to the console
window.

3. Enter the command dotnet run . The .NET Core CLI automatically compiles and executes the application,
which displays the message "Hello World!" in the console window.

.NET Core 2.0 supports C# 7.1, which adds a number of new features, including:

The Main method, the application entry point, can be marked with the async keyword.
Inferred tuple names.
Default expressions.

.NET Core 2.0 includes a number of features that make it easier to install .NET Core and to use it on supported
operating systems.

.NET Core 2.0 offers a single Linux implementation that works on multiple Linux distributions. .NET Core 1.x
required that you download a distribution-specific Linux implementation.

You can also develop apps that target Linux as a single operating system. .NET Core 1.x required that you target
each Linux distribution separately.

.NET Core 1.x on macOS required the OpenSSL toolkit's cryptographic library. .NET Core 2.0 uses the Apple
cryptographic libraries and doesn't require OpenSSL, so you no longer need to install it.

The .NET Standard defines a versioned set of APIs that must be available on .NET implementations that comply
with that version of the standard. The .NET Standard is targeted at library developers. It aims to guarantee the
functionality that is available to a library that targets a version of the .NET Standard on each .NET implementation.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async

Expanded surface area

Support for .NET Framework libraries

Visual Studio integration

Retargeting .NET Core apps and .NET Standard libraries

Live Unit Testing support for .NET Core

Better support for multiple target frameworks

.NET Core 1.x supports the .NET Standard version 1.6; .NET Core 2.0 supports the latest version, .NET Standard
2.0. For more information, see .NET Standard.

.NET Standard 2.0 includes over 20,000 more APIs than were available in the .NET Standard 1.6. Much of this
expanded surface area results from incorporating APIs that are common to the .NET Framework and Xamarin into
.NET Standard.

.NET Standard 2.0 class libraries can also reference .NET Framework class libraries, provided that they call APIs
that are present in the .NET Standard 2.0. No recompilation of the .NET Framework libraries is required.

For a list of the APIs that have been added to the .NET Standard since its last version, the .NET Standard 1.6, see
.NET Standard 2.0 vs. 1.6.

The total number of APIs available on .NET Core 2.0 has more than doubled in comparison with .NET Core 1.1.

And with the Windows Compatibility Pack porting from .NET Framework has also become much simpler.

.NET Core code can reference existing .NET Framework libraries, including existing NuGet packages. Note that the
libraries must use APIs that are found in .NET Standard.

Visual Studio 2017 version 15.3 and in some cases Visual Studio for Mac offer a number of significant
enhancements for .NET Core developers.

If the .NET Core 2.0 SDK is installed, you can retarget .NET Core 1.x projects to .NET Core 2.0 and .NET Standard
1.x libraries to .NET Standard 2.0.

To retarget your project in Visual Studio, you open the Application tab of the project's properties dialog and
change the Target framework value to .NET Core 2.0 or .NET Standard 2.0. You can also change it by right-
clicking on the project and selecting the Edit *.csproj file option. For more information, see the Tooling section
earlier in this topic.

Whenever you modify your code, Live Unit Testing automatically runs any affected unit tests in the background
and displays the results and code coverage live in the Visual Studio environment. .NET Core 2.0 now supports Live
Unit Testing. Previously, Live Unit Testing was available only for .NET Framework applications.

For more information, see Live Unit Testing with Visual Studio 2017 and the Live Unit Testing FAQ.

If you're building a project for multiple target frameworks, you can now select the target platform from the top-
level menu. In the following figure, a project named SCD1 targets 64-bit macOS X 10.11 (osx.10.11-x64) and 64-
bit Windows 10/Windows Server 2016 (win10-x64). You can select the target framework before selecting the
project button, in this case to run a debug build.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://raw.githubusercontent.com/dotnet/standard/master/docs/versions/netstandard2.0_diff.md
https://docs.microsoft.com/visualstudio/test/live-unit-testing
https://docs.microsoft.com/visualstudio/test/live-unit-testing-faq

Side-by-side support for .NET Core SDKs

Documentation improvements
.NET Application Architecture

See also

You can now install the .NET Core SDK independently of Visual Studio. This makes it possible for a single version
of Visual Studio to build projects that target different versions of .NET Core. Previously, Visual Studio and the .NET
Core SDK were tightly coupled; a particular version of the SDK accompanied a particular version of Visual Studio.

.NET Application Architecture gives you access to a set of e-books that provide guidance, best practices, and
sample applications when using .NET to build:

Microservices and Docker containers
Web applications with ASP.NET
Mobile applications with Xamarin
Applications that are deployed to the Cloud with Azure

What's new in ASP.NET Core 2.0

https://dotnet.microsoft.com/learn/dotnet/architecture-guides
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/index
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/index
https://docs.microsoft.com/xamarin/xamarin-forms/enterprise-application-patterns/index
https://docs.microsoft.com/azure/architecture/reference-architectures/index
https://docs.microsoft.com/aspnet/core/aspnetcore-2.0

Evaluate breaking changes in .NET Core
11/12/2019 • 13 minutes to read • Edit Online

NOTE

NOTE

Modifications to the public contract

Types

Throughout its history, .NET has attempted to maintain a high level of compatibility from version to version and
across flavors of .NET. This continues to be true for .NET Core. Although .NET Core can be considered as a new
technology that is independent of the .NET Framework, two major factors limit the ability of .NET Core to diverge
from .NET Framework:

A large number of developers either originally developed or continue to develop .NET Framework
applications. They expect consistent behavior across .NET implementations.

.NET Standard library projects allow developers to create libraries that target common APIs shared by .NET
Core and .NET Framework. Developers expect that a library used in a .NET Core application should behave
identically to the same library used in a .NET Framework application.

Along with compatibility across .NET implementations, developers expect a high level of compatibility across .NET
Core versions. In particular, code written for an earlier version of .NET Core should run seamlessly on a later
version of .NET Core. In fact, many developers expect that the new APIs found in newly released versions of .NET
Core should also be compatible with the pre-release versions in which those APIs were introduced.

This article outlines the categories of compatibility changes (or breaking changes) and the way in which the .NET
team evaluates changes in each of these categories. Understanding how the .NET team approaches possible
breaking changes is particularly helpful for developers who are opening pull requests in the dotnet/corefx GitHub
repository that modify the behavior of existing APIs.

For a definition of compatibility categories, such as binary compatibility and backward compatibility, see Breaking change
categories.

The following sections describes the categories of changes made to .NET Core APIs and their impact on application
compatibility. The ✔� icon indicates that a particular kind of change is allowed, � indicates that it is disallowed, and
� indicates a change that may or may not be allowed. Changes in this last category require judgment and an
evaluation of how predictable, obvious, and consistent the previous behavior was.

In addition to serving as a guide to how changes to .NET Core libraries are evaluated, library developers can also use these
criteria to evaluate changes to their libraries that target multiple .NET implementations and versions.

Changes in this category modify the public surface area of a type. Most of the changes in this category are
disallowed since they violate backwards compatibility (the ability of an application that was developed with a
previous version of an API to execute without recompilation on a later version).

✔� Removing an interface implementation from a type when the interface is already
implemented by a base type

https://github.com/dotnet/docs/blob/master/docs/core/compatibility/index.md
https://github.com/dotnet/corefx
https://docs.microsoft.com/en-us/dotnet/core/compatibility/categories

� Adding a new interface implementation to a type

This is an acceptable change because it does not adversely affect existing clients. Any changes to the type
must work within the boundaries of acceptable changes defined here for the new implementation to remain
acceptable. Extreme caution is necessary when adding interfaces that directly affect the ability of a designer
or serializer to generate code or data that cannot be consumed down-level. An example is the ISerializable
interface.

� Introducing a new base class

A type can be introduced into an hierarchy between two existing types if it doesn't introduce any new
abstract members or change the semantics or behavior of existing types. For example, in .NET Framework
2.0, the DbConnection class became a new base class for SqlConnection, which had previously derived
directly from Component.

✔� Moving a type from one assembly to another

Note that the old assembly must be marked with the TypeForwardedToAttribute that points to the new
assembly.

✔� Changing a struct type to a readonly struct type

Note that changing a readonly struct type to a struct type is not allowed.

✔� Adding the sealed or abstract keyword to a type when there are no accessible (public or
protected) constructors

✔� Expanding the visibility of a type

� Changing the namespace or name of a type

� Renaming or removing a public type

This breaks all code that uses the renamed or removed type.

� Changing the underlying type of an enumeration

This is a compile-time and behavioral breaking change as well as a binary breaking change that can make
attribute arguments unparsable.

� Sealing a type that was previously unsealed

� Adding an interface to the set of base types of an interface

If an interface implements an interface that it previously did not implement, all types that implemented the
original version of the interface are broken.

� Removing a class from the set of base classes or an interface from the set of implemented
interfaces

There is one exception to the rule for interface removal: you can add the implementation of an interface that
derives from the removed interface. For example, you can remove IDisposable if the type or interface now
implements IComponent, which implements IDisposable.

� Changing a readonly struct type to a struct type

Note that the change of a struct type to a readonly struct type is allowed.

� Changing a struct type to a ref struct type, and vice versa

� Reducing the visibility of a type

https://docs.microsoft.com/dotnet/api/system.runtime.serialization.iserializable
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/dotnet/api/system.data.common.dbconnection
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnection
https://docs.microsoft.com/dotnet/api/system.componentmodel.component
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.typeforwardedtoattribute
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct

Members

However, increasing the visibility of a type is allowed.

✔� Expanding the visibility of a member that is not virtual

✔� Adding an abstract member to a public type that has no accessible (public or protected)
constructors, or the type is sealed

However, adding an abstract member to a type that has accessible (public or protected) constructors and is
not sealed is not allowed.

✔� Restricting the visibility of a protected member when the type has no accessible (public or
protected) constructors, or the type is sealed

✔� Moving a member into a class higher in the hierarchy than the type from which it was
removed

✔� Adding or removing an override

Note that introducing an override might cause previous consumers to skip over the override when calling
base.

✔� Adding a constructor to a class, along with a parameterless constructor if the class previously
had no constructors

However, adding a constructor to a class that previously had no constructors without adding the
parameterless constructor is not allowed.

✔� Changing a member from abstract to virtual

✔� Changing from a ref readonly to a ref return value (except for virtual methods or interfaces)

✔� Removing readonly from a field, unless the static type of the field is a mutable value type

✔� Calling a new event that wasn't previously defined

� Adding a new instance field to a type

This change impacts serialization.

� Renaming or removing a public member or parameter

This breaks all code that uses the renamed or removed member, or parameter.

Note that this includes removing or renaming a getter or setter from a property, as well as renaming or
removing enumeration members.

� Adding a member to an interface

� Changing the value of a public constant or enumeration member

� Changing the type of a property, field, parameter, or return value

� Adding, removing, or changing the order of parameters

� Adding or removing the in, out , or ref keyword from a parameter

� Renaming a parameter (including changing its case)

This is considered breaking for two reasons:

It breaks late-bound scenarios such as the late binding feature in Visual Basic and dynamic in C#.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/protected
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/readonly
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types

It breaks source compatibility when developers use named arguments.

� Changing from a ref return value to a ref readonly return value

�� Changing from a ref readonly to a ref return value on a virtual method or interface

� Adding or removing abstract from a member

� Removing the virtual keyword from a member

While this often is not a breaking change because the C# compiler tends to emit callvirt Intermediate
Language (IL) instructions to call non-virtual methods (callvirt performs a null check, while a normal call
doesn't), this behavior is not invariable for several reasons:

C# is not the only language that .NET targets.

The C# compiler increasingly tries to optimize callvirt to a normal call whenever the target method
is non-virtual and is probably not null (such as a method accessed through the ?. null propagation
operator).

Making a method virtual means that the consumer code would often end up calling it non-virtually.

� Adding the virtual keyword to a member

� Making a virtual member abstract

A virtual member provides a method implementation that can be overridden by a derived class. An abstract
member provides no implementation and must be overridden.

� Adding an abstract member to a public type that has accessible (public or protected)
constructors and that is not sealed

� Adding or removing the static keyword from a member

� Adding an overload that precludes an existing overload and defines a different behavior

This breaks existing clients that were bound to the previous overload. For example, if a class has a single
version of a method that accepts a UInt32, an existing consumer will successfully bind to that overload when
passing a Int32 value. However, if you add an overload that accepts an Int32, when recompiling or using
late-binding, the compiler now binds to the new overload. If different behavior results, this is a breaking
change.

� Adding a constructor to a class that previously had no constructor without adding the
parameterless constructor

�� Adding readonly to a field

� Reducing the visibility of a member

This includes reducing the visibility of a protected member when there are accessible (public or protected)
constructors and the type is not sealed. If this is not the case, reducing the visibility of a protected member is
allowed.

Note that increasing the visibility of a member is allowed.

� Changing the type of a member

The return value of a method or the type of a property or field cannot be modified. For example, the
signature of a method that returns an Object cannot be changed to return a String, or vice versa.

� Adding a field to a struct that previously had no state

https://docs.microsoft.com/en-us/dotnet/core/compatibility/categories
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/dotnet/api/system.reflection.emit.opcodes.callvirt
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/static
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/readonly
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/protected
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string

Behavioral changes
Assemblies

Properties, fields, parameters, and return values

Exceptions

Definite assignment rules allow the use of uninitialized variables so long as the variable type is a stateless
struct. If the struct is made stateful, code could end up with uninitialized data. This is both potentially a
source breaking and a binary breaking change.

� Firing an existing event when it was never fired before

✔� Making an assembly portable when the same platforms are still supported

� Changing the name of an assembly

� Changing the public key of an assembly

✔� Changing the value of a property, field, return value, or out parameter to a more derived type

For example, a method that returns a type of Object can return a String instance. (However, the method
signature cannot change.)

✔� Increasing the range of accepted values for a property or parameter if the member is not
virtual

Note that while the range of values that can be passed to the method or are returned by the member can
expand, the parameter or member type cannot. For example, while the values passed to a method can
expand from 0-124 to 0-255, the parameter type cannot change from Byte to Int32.

� Increasing the range of accepted values for a property or parameter if the member is virtual

This change breaks existing overridden members, which will not function correctly for the extended range of
values.

� Decreasing the range of accepted values for a property or parameter

� Increasing the range of returned values for a property, field, return value, or out parameter

� Changing the returned values for a property, field, method return value, or out parameter

� Changing the default value of a property, field, or parameter

� Changing the precision of a numeric return value

� A change in the parsing of input and throwing new exceptions (even if parsing behavior is not
specified in the documentation

✔� Throwing a more derived exception than an existing exception

Because the new exception is a subclass of an existing exception, previous exception handling code
continues to handle the exception. For example, in .NET Framework 4, culture creation and retrieval
methods began to throw a CultureNotFoundException instead of an ArgumentException if the culture could
not be found. Because CultureNotFoundException derives from ArgumentException, this is an acceptable
change.

✔� Throwing a more specific exception than NotSupportedException,
NotImplementedException, NullReferenceException

✔� Throwing an exception that is considered unrecoverable

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/dotnet/api/system.globalization.culturenotfoundexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.globalization.culturenotfoundexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.notsupportedexception
https://docs.microsoft.com/dotnet/api/system.notimplementedexception
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception

Attributes

Platform support

Internal implementation changes

Unrecoverable exceptions should not be caught but instead should be handled by a high-level catch-all
handler. Therefore, users are not expected to have code that catches these explicit exceptions. The
unrecoverable exceptions are:

AccessViolationException
ExecutionEngineException
SEHException
StackOverflowException

✔� Throwing a new exception in a new code path

The exception must apply only to a new code-path which is executed with new parameter values or state,
and that can't be executed by existing code that targets the previous version.

✔� Removing an exception to enable more robust behavior or new scenarios

For example, a Divide method that previously only handled positive values and threw an
ArgumentOutOfRangeException otherwise can be changed to support both negative and positive values
without throwing an exception.

✔� Changing the text of an error message

Developers should not rely on the text of error messages, which also change based on the user's culture.

� Throwing an exception in any other case not listed above

� Removing an exception in any other case not listed above

✔� Changing the value of an attribute that is not observable

� Changing the value of an attribute that is observable

� Removing an attribute

In most cases, removing an attribute (such as NonSerializedAttribute) is a breaking change.

✔� Supporting an operation on a platform that was previously not supported

� Not supporting or now requiring a specific service pack for an operation that was previously
supported on a platform

� Changing the surface area of an internal type

Such changes are generally allowed, although they break private reflection. In some cases, where popular
third-party libraries or a large number of developers depend on the internal APIs, such changes may not be
allowed.

� Changing the internal implementation of a member

These changes are generally allowed, although they break private reflection. In some cases, where customer
code frequently depends on private reflection or where the change introduces unintended side effects, these
changes may not be allowed.

✔� Improving the performance of an operation

https://docs.microsoft.com/dotnet/api/system.accessviolationexception
https://docs.microsoft.com/dotnet/api/system.executionengineexception
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.sehexception
https://docs.microsoft.com/dotnet/api/system.stackoverflowexception
https://docs.microsoft.com/dotnet/api/system.argumentoutofrangeexception
https://docs.microsoft.com/dotnet/api/system.nonserializedattribute

Code changes

The ability to modify the performance of an operation is essential, but such changes can break code that
relies upon the current speed of an operation. This is particularly true of code that depends on the timing of
asynchronous operations. Note that the performance change should have no effect on other behavior of the
API in question; otherwise, the change will be breaking.

✔� Indirectly (and often adversely) changing the performance of an operation

If the change in question is not categorized as breaking for some other reason, this is acceptable. Often,
actions need to be taken that may include extra operations or that add new functionality. This will almost
always affect performance but may be essential to make the API in question function as expected.

� Changing a synchronous API to asynchronous (and vice versa)

✔� Adding params to a parameter

� Changing a struct to a class and vice versa

� Adding the checked keyword to a code block

This change may cause code that previously executed to throw an OverflowException and is unacceptable.

� Removing params from a parameter

� Changing the order in which events are fired

Developers can reasonably expect events to fire in the same order, and developer code frequently depends
on the order in which events are fired.

� Removing the raising of an event on a given action

� Changing the number of times given events are called

� Adding the FlagsAttribute to an enumeration type

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/dotnet/api/system.flagsattribute

Learn .NET Core and the .NET Core SDK tools by
exploring these Tutorials
11/1/2019 • 2 minutes to read • Edit Online

Building applications with Visual Studio 2017

Building applications with Visual Studio Code

Building applications with Visual Studio for Mac

Building applications with the .NET Core CLI tools

Other

The following tutorials are available for learning about .NET Core.

Building a C# Hello World application
Debugging your C# Hello World application
Publishing your C# Hello World application
Building a C# class library
Building a class library with Visual Basic
Testing a class library
Consuming a class library
Azure Cosmos DB: Get started with the SQL API and .NET Core

Get started with C# and Visual Studio Code
Get started with .NET Core on macOS

Get started with .NET Core on macOS using Visual Studio for Mac
Building a complete .NET Core solution on macOS using Visual Studio for Mac

Get started with .NET Core on Windows/Linux/macOS using the .NET Core CLI tools
Organizing and testing projects with the .NET Core CLI tools
Get started with F#

Unit Testing in .NET Core using dotnet test
Unit testing with MSTest and .NET Core
Developing Libraries with Cross Platform Tools
Hosting .NET Core from native code
Create a custom template for dotnet new

For tutorials about developing ASP.NET Core web applications, see the ASP.NET Core documentation.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/index.md
https://docs.microsoft.com/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/get-started-command-line
https://docs.microsoft.com/aspnet/core/

Tutorial: Create an item template
9/12/2019 • 5 minutes to read • Edit Online

Prerequisites

Create the required folders

parent_folder
├───test
└───working
 └───templates

Create an item template

With .NET Core, you can create and deploy templates that generate projects, files, even resources. This tutorial is
part one of a series that teaches you how to create, install, and uninstall, templates for use with the dotnet new

command.

In this part of the series, you'll learn how to:

Create a class for an item template
Create the template config folder and file
Install a template from a file path
Test an item template
Uninstall an item template

.NET Core 2.2 SDK or later versions.

Read the reference article Custom templates for dotnet new.

The reference article explains the basics about templates and how they're put together. Some of this
information will be reiterated here.

Open a terminal and navigate to the working\templates\ folder.

This series uses a "working folder" where your template source is contained and a "testing folder" used to test
your templates. The working folder and testing folder should be under the same parent folder.

First, create the parent folder, the name does not matter. Then, create a subfolder named working. Inside of the
working folder, create a subfolder named templates.

Next, create a folder under the parent folder named test. The folder structure should look like the following:

An item template is a specific type of template that contains one or more files. These types of templates are useful
when you want to generate something like a config, code, or solution file. In this example, you'll create a class that
adds an extension method to the string type.

In your terminal, navigate to the working\templates\ folder and create a new subfolder named extensions. Enter
the folder.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/cli-templates-create-item-template.md
https://dotnet.microsoft.com/download

working
└───templates
 └───extensions

using System;

namespace System
{
 public static class StringExtensions
 {
 public static string Reverse(this string value)
 {
 var tempArray = value.ToCharArray();
 Array.Reverse(tempArray);
 return new string(tempArray);
 }
 }
}

Create the template config

working
└───templates
 └───extensions
 └───.template.config
 template.json

{
 "$schema": "http://json.schemastore.org/template",
 "author": "Me",
 "classifications": ["Common", "Code"],
 "identity": "ExampleTemplate.StringExtensions",
 "name": "Example templates: string extensions",
 "shortName": "stringext",
 "tags": {
 "language": "C#",
 "type": "item"
 }
}

Create a new file named CommonExtensions.cs and open it with your favorite text editor. This class will provide an
extension method named Reverse that reverses the contents of a string. Paste in the following code and save the
file:

Now that you have the content of the template created, you need to create the template config at the root folder of
the template.

Templates are recognized in .NET Core by a special folder and config file that exist at the root of your template. In
this tutorial, your template folder is located at working\templates\extensions\.

When you create a template, all files and folders in the template folder are included as part of the template except
for the special config folder. This config folder is named .template.config.

First, create a new subfolder named .template.config, enter it. Then, create a new file named template.json. Your
folder structure should look like this:

Open the template.json with your favorite text editor and paste in the following JSON code and save it:

C:\working\templates\extensions> dotnet new -i .\
Usage: new [options]

Options:
 -h, --help Displays help for this command.
 -l, --list Lists templates containing the specified name. If no name is specified, lists all
templates.

... cut to save space ...

Templates Short Name Language Tags
--

Example templates: string extensions stringext [C#] Common/Code
Console Application console [C#], F#, VB Common/Console
Class library classlib [C#], F#, VB Common/Library
WPF Application wpf [C#], VB Common/WPF
Windows Forms (WinForms) Application winforms [C#], VB Common/WinForms
Worker Service worker [C#] Common/Worker/Web

Test the item template

C:\test> dotnet new console
The template "Console Application" was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on C:\test\test.csproj...
 Restore completed in 54.82 ms for C:\test\test.csproj.

Restore succeeded.

C:\test> dotnet run
Hello World!

This config file contains all the settings for your template. You can see the basic settings, such as name and
shortName , but there's also a tags/type value that is set to item . This categorizes your template as an item

template. There's no restriction on the type of template you create. The item and project values are common
names that .NET Core recommends so that users can easily filter the type of template they're searching for.

The classifications item represents the tags column you see when you run dotnet new and get a list of
templates. Users can also search based on classification tags. Don't confuse the tags property in the *.json file
with the classifications tags list. They're two different things unfortunately named similarly. The full schema for
the template.json file is found at the JSON Schema Store. For more information about the template.json file, see
the dotnet templating wiki.

Now that you have a valid .template.config/template.json file, your template is ready to be installed. In your
terminal, navigate to the extensions folder and run the following command to install the template located at the
current folder :

On Windows: dotnet new -i .\

On Linux or macOS: dotnet new -i ./

This command outputs the list of templates installed, which should include yours.

Now that you have an item template installed, test it. Navigate to the test/ folder and create a new console
application with dotnet new console . This generates a working project you can easily test with the dotnet run

command.

http://json.schemastore.org/template
https://github.com/dotnet/templating/wiki

C:\test> dotnet new stringext
The template "Example templates: string extensions" was created successfully.

Console.WriteLine("Hello World!".Reverse());

C:\test> dotnet run
!dlroW olleH

Uninstall the template

C:\working> dotnet new -u
Template Instantiation Commands for .NET Core CLI

Currently installed items:
 Microsoft.DotNet.Common.ItemTemplates
 Templates:
 dotnet gitignore file (gitignore)
 global.json file (globaljson)
 NuGet Config (nugetconfig)
 Solution File (sln)
 Dotnet local tool manifest file (tool-manifest)
 Web Config (webconfig)

... cut to save space ...

 NUnit3.DotNetNew.Template
 Templates:
 NUnit 3 Test Project (nunit) C#
 NUnit 3 Test Item (nunit-test) C#
 NUnit 3 Test Project (nunit) F#
 NUnit 3 Test Item (nunit-test) F#
 NUnit 3 Test Project (nunit) VB
 NUnit 3 Test Item (nunit-test) VB
 C:\working\templates\extensions
 Templates:
 Example templates: string extensions (stringext) C#

C:\working> dotnet new -u C:\working\templates\extensions

Next steps

Next, run dotnet new stringext to generate the CommonExtensions.cs from the template.

Change the code in Program.cs to reverse the "Hello World" string with the extension method provided by the
template.

Run the program again and you'll see that the result is reversed.

Congratulations! You created and deployed an item template with .NET Core. In preparation for the next part of
this tutorial series, you must uninstall the template you created. Make sure to delete all files from the test folder
too. This will get you back to a clean state ready for the next major section of this tutorial.

Because you installed the template by file path, you must uninstall it with the absolute file path. You can see a list
of templates installed by running the dotnet new -u command. Your template should be listed last. Use the path
listed to uninstall your template with the dotnet new -u <ABSOLUTE PATH TO TEMPLATE DIRECTORY> command.

In this tutorial, you created an item template. To learn how to create a project template, continue this tutorial
series.

Create a project template

Tutorial: Create a project template
10/15/2019 • 5 minutes to read • Edit Online

Prerequisites

Create a project template

working
└───templates
 └───consoleasync
 consoleasync.csproj
 Program.cs

Modify Program.cs

With .NET Core, you can create and deploy templates that generate projects, files, even resources. This tutorial is
part two of a series that teaches you how to create, install, and uninstall, templates for use with the dotnet new

command.

In this part of the series you'll learn how to:

Create the resources of a project template
Create the template config folder and file
Install a template from a file path
Test an item template
Uninstall an item template

Complete part 1 of this tutorial series.
Open a terminal and navigate to the working\templates\ folder.

Project templates produce ready-to-run projects that make it easy for users to start with a working set of code.
.NET Core includes a few project templates such as a console application or a class library. In this example, you'll
create a new console project that enables C# 8.0 and produces an async main entry point.

In your terminal, navigate to the working\templates\ folder and create a new subfolder named consoleasync. Enter
the subfolder and run dotnet new console to generate the standard console application. You'll be editing the files
produced by this template to create a new template.

Open up the program.cs file. The console project doesn't use an asynchronous entry point, so let's add that.
Change your code to the following and save the file:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/cli-templates-create-project-template.md

using System;
using System.Threading.Tasks;

namespace consoleasync
{
 class Program
 {
 static async Task Main(string[] args)
 {
 await Console.Out.WriteAsync("Hello World with C# 8.0!");
 }
 }
}

Modify consoleasync.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.2</TargetFramework>

 <LangVersion>8.0</LangVersion>

 </PropertyGroup>

</Project>

Build the project

C:\working\templates\consoleasync> dotnet run
Hello World with C# 8.0!

Create the template config

Let's update the C# language version the project uses to version 8.0. Edit the consoleasync.csproj file and add the
<LangVersion> setting to a <PropertyGroup> node.

Before you complete a project template, you should test it to make sure it compiles and runs correctly. In your
terminal, run the dotnet run command and you should see the following output:

You can delete the obj and bin folders created by using dotnet run . Deleting these files ensures your template
only includes the files related to your template and not any files that result of a build action.

Now that you have the content of the template created, you need to create the template config at the root folder of
the template.

Templates are recognized in .NET Core by a special folder and config file that exist at the root of your template. In
this tutorial, your template folder is located at working\templates\consoleasync\.

When you create a template, all files and folders in the template folder are included as part of the template except
for the special config folder. This config folder is named .template.config.

First, create a new subfolder named .template.config, enter it. Then, create a new file named template.json. Your
folder structure should look like this:

working
└───templates
 └───consoleasync
 └───.template.config
 template.json

{
 "$schema": "http://json.schemastore.org/template",
 "author": "Me",
 "classifications": ["Common", "Console", "C#8"],
 "identity": "ExampleTemplate.AsyncProject",
 "name": "Example templates: async project",
 "shortName": "consoleasync",
 "tags": {
 "language": "C#",
 "type": "project"
 }
}

C:\working\templates\consoleasync> dotnet new -i .\
Usage: new [options]

Options:
 -h, --help Displays help for this command.
 -l, --list Lists templates containing the specified name. If no name is specified, lists all
templates.

... cut to save space ...

Templates Short Name Language Tags
--

Console Application console [C#], F#, VB Common/Console
Example templates: async project consoleasync [C#] Common/Console/C#8
Class library classlib [C#], F#, VB Common/Library
WPF Application wpf [C#], VB Common/WPF
Windows Forms (WinForms) Application winforms [C#], VB Common/WinForms
Worker Service worker [C#] Common/Worker/Web

Open the template.json with your favorite text editor and paste in the following json code and save it:

This config file contains all of the settings for your template. You can see the basic settings such as name and
shortName but also there's a tags/type value that's set to project . This designates your template as a project

template. There's no restriction on the type of template you create. The item and project values are common
names that .NET Core recommends so that users can easily filter the type of template they're searching for.

The classifications item represents the tags column you see when you run dotnet new and get a list of
templates. Users can also search based on classification tags. Don't confuse the tags property in the json file with
the classifications tags list. They're two different things unfortunately named similarly. The full schema for the
template.json file is found at the JSON Schema Store. For more information about the template.json file, see the
dotnet templating wiki.

Now that you have a valid .template.config/template.json file, your template is ready to be installed. Before you
install the template, make sure that you delete any extra files folders and files you don't want included in your
template, like the bin or obj folders. In your terminal, navigate to the consoleasync folder and run
dotnet new -i .\ to install the template located at the current folder. If you're using a Linux or MacOS operating

system, use a forward slash: dotnet new -i ./ .

This command outputs the list of templates installed, which should include yours.

http://json.schemastore.org/template
https://github.com/dotnet/templating/wiki

Test the project template

C:\test> dotnet new consoleasync
The template "Example templates: async project" was created successfully.

C:\test> dotnet run
Hello World with C# 8.0!

Uninstall the template

C:\working> dotnet new -u
Template Instantiation Commands for .NET Core CLI

Currently installed items:
 Microsoft.DotNet.Common.ItemTemplates
 Templates:
 dotnet gitignore file (gitignore)
 global.json file (globaljson)
 NuGet Config (nugetconfig)
 Solution File (sln)
 Dotnet local tool manifest file (tool-manifest)
 Web Config (webconfig)

... cut to save space ...

 NUnit3.DotNetNew.Template
 Templates:
 NUnit 3 Test Project (nunit) C#
 NUnit 3 Test Item (nunit-test) C#
 NUnit 3 Test Project (nunit) F#
 NUnit 3 Test Item (nunit-test) F#
 NUnit 3 Test Project (nunit) VB
 NUnit 3 Test Item (nunit-test) VB
 C:\working\templates\consoleasync
 Templates:
 Example templates: async project (consoleasync) C#

C:\working> dotnet new -u C:\working\templates\consoleasync

Next steps

Now that you have an item template installed, test it. Navigate to the test folder and create a new console
application with dotnet new consoleasync . This generates a working project you can easily test with the
dotnet run command.

Congratulations! You created and deployed a project template with .NET Core. In preparation for the next part of
this tutorial series, you must uninstall the template you created. Make sure to delete all files from the test folder
too. This will get you back to a clean state ready for the next major section of this tutorial.

Because you installed the template by using a file path, you must uninstall it with the absolute file path. You can
see a list of templates installed by running the dotnet new -u command. Your template should be listed last. Use
the path listed to uninstall your template with the dotnet new -u <ABSOLUTE PATH TO TEMPLATE DIRECTORY> command.

In this tutorial, you created a project template. To learn how to package both the item and project templates into an
easy-to-use file, continue this tutorial series.

Create a template pack

Tutorial: Create a template pack
9/19/2019 • 5 minutes to read • Edit Online

Prerequisites

Create a template pack project

dotnet new console -n templatepack -o .

With .NET Core, you can create and deploy templates that generate projects, files, even resources. This tutorial is
part three of a series that teaches you how to create, install, and uninstall, templates for use with the dotnet new

command.

In this part of the series you'll learn how to:

Create a *.csproj project to build a template pack
Configure the project file for packing
Install a template from a NuGet package file
Uninstall a template by package ID

Complete part 1 and part 2 of this tutorial series.

This tutorial uses the two templates created in the first two parts of this tutorial. It's possible you can use a
different template as long as you copy the template as a folder into the working\templates\ folder.

Open a terminal and navigate to the working\templates\ folder.

A template pack is one or more templates packaged into a file. When you install or uninstall a pack, all templates
contained in the pack are added or removed, respectively. The previous parts of this tutorial series only worked
with individual templates. To share a non-packed template, you have to copy the template folder and install via that
folder. Because a template pack can have more than one template in it, and is a single file, sharing is easier.

Template packs are represented by a NuGet package (.nupkg) file. And, like any NuGet package, you can upload
the template pack to a NuGet feed. The dotnet new -i command supports installing template pack from a NuGet
package feed. Additionally, you can install a template pack from a .nupkg file directly.

Normally you use a C# project file to compile code and produce a binary. However, the project can also be used to
generate a template pack. By changing the settings of the .csproj, you can prevent it from compiling any code and
instead include all the assets of your templates as resources. When this project is built, it produces a template pack
NuGet package.

The pack you'll create will include the item template and package template previously created. Because we grouped
the two templates into the working\templates\ folder, we can use the working folder for the .csproj file.

In your terminal, navigate to the working folder. Create a new project and set the name to templatepack and the
output folder to the current folder.

The -n parameter sets the .csproj filename to templatepack.csproj and the -o parameters creates the files in the
current directory. You should see a result similar to the following output.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/cli-templates-create-template-pack.md

C:\working> dotnet new console -n templatepack -o .
The template "Console Application" was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on .\templatepack.csproj...
 Restore completed in 52.38 ms for C:\working\templatepack.csproj.

Restore succeeded.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <PackageType>Template</PackageType>
 <PackageVersion>1.0</PackageVersion>
 <PackageId>AdatumCorporation.Utility.Templates</PackageId>
 <Title>AdatumCorporation Templates</Title>
 <Authors>Me</Authors>
 <Description>Templates to use when creating an application for Adatum Corporation.</Description>
 <PackageTags>dotnet-new;templates;contoso</PackageTags>

 <TargetFramework>netstandard2.0</TargetFramework>

 <IncludeContentInPack>true</IncludeContentInPack>
 <IncludeBuildOutput>false</IncludeBuildOutput>
 <ContentTargetFolders>content</ContentTargetFolders>
 </PropertyGroup>

 <ItemGroup>
 <Content Include="templates***" Exclude="templates**\bin**;templates**\obj**" />
 <Compile Remove="***" />
 </ItemGroup>

</Project>

Build and install

Next, open the templatepack.csproj file in your favorite editor and replace the content with the following XML:

The <PropertyGroup> settings in the XML above is broken into three groups. The first group deals with properties
required for a NuGet package. The three <Package settings have to do with the NuGet package properties to
identify your package on a NuGet feed. Specifically the <PacakgeId> value is used to uninstall the template pack
with a single name instead of a directory path. It can also be used to install the template pack from a NuGet feed.
The remaining settings such as <Title> and <Tags> have to do with metadata displayed on the NuGet feed. For
more information about NuGet settings, see NuGet and MSBuild properties.

The <TargetFramework> setting must be set so that MSBuild will run properly when you run the pack command to
compile and pack the project.

The last three settings have to do with configuring the project correctly to include the templates in the appropriate
folder in the NuGet pack when it's created.

The <ItemGroup> contains two settings. First, the <Content> setting includes everything in the templates folder as
content. It's also set to exclude any bin folder or obj folder to prevent any compiled code (if you tested and
compiled your templates) from being included. Second, the <Compile> setting excludes all code files from
compiling no matter where they're located. This setting prevents the project being used to create a template pack
from trying to compile the code in the templates folder hierarchy.

Save this file and then run the pack command

https://docs.microsoft.com/nuget/reference/msbuild-targets

dotnet pack

C:\working> dotnet pack
Microsoft (R) Build Engine version 16.2.0-preview-19278-01+d635043bd for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

 Restore completed in 123.86 ms for C:\working\templatepack.csproj.

 templatepack -> C:\working\bin\Debug\netstandard2.0\templatepack.dll
 Successfully created package 'C:\working\bin\Debug\AdatumCorporation.Utility.Templates.1.0.0.nupkg'.

C:\working> dotnet new -i C:\working\bin\Debug\AdatumCorporation.Utility.Templates.1.0.0.nupkg
Usage: new [options]

Options:
 -h, --help Displays help for this command.
 -l, --list Lists templates containing the specified name. If no name is specified, lists all
templates.

... cut to save space ...

Templates Short Name Language Tags
--

Example templates: string extensions stringext [C#] Common/Code
Console Application console [C#], F#, VB Common/Console
Example templates: async project consoleasync [C#] Common/Console/C#8
Class library classlib [C#], F#, VB Common/Library

Uninstall the template pack

This command will build your project and create a NuGet package in This should be the working\bin\Debug folder.

Next, install the template pack file with the dotnet new -i PATH_TO_NUPKG_FILE command.

If you uploaded the NuGet package to a NuGet feed, you can use the dotnet new -i PACKAGEID command where
PACKAGEID is the same as the <PackageId> setting from the .csproj file. This package ID is the same as the NuGet

package identifier.

No matter how you installed the template pack, either with the .nupkg file directly or by NuGet feed, removing a
template pack is the same. Use the <PackageId> of the template you want to uninstall. You can get a list of
templates that are installed by running the dotnet new -u command.

C:\working> dotnet new -u
Template Instantiation Commands for .NET Core CLI

Currently installed items:
 Microsoft.DotNet.Common.ItemTemplates
 Templates:
 dotnet gitignore file (gitignore)
 global.json file (globaljson)
 NuGet Config (nugetconfig)
 Solution File (sln)
 Dotnet local tool manifest file (tool-manifest)
 Web Config (webconfig)

... cut to save space ...

 NUnit3.DotNetNew.Template
 Templates:
 NUnit 3 Test Project (nunit) C#
 NUnit 3 Test Item (nunit-test) C#
 NUnit 3 Test Project (nunit) F#
 NUnit 3 Test Item (nunit-test) F#
 NUnit 3 Test Project (nunit) VB
 NUnit 3 Test Item (nunit-test) VB
 AdatumCorporation.Utility.Templates
 Templates:
 Example templates: async project (consoleasync) C#
 Example templates: string extensions (stringext) C#

Next steps

Run dotnet new -u AdatumCorporation.Utility.Templates to uninstall the template. The dotnet new command will
output help information that should omit the templates you previously installed.

Congratulations! you've installed and uninstalled a template pack.

To learn more about templates, most of which you've already learned, see the Custom templates for dotnet new
article.

dotnet/templating GitHub repo Wiki
dotnet/dotnet-template-samples GitHub repo
template.json schema at the JSON Schema Store

https://github.com/dotnet/templating/wiki
https://github.com/dotnet/dotnet-template-samples
http://json.schemastore.org/template

Tutorial: Create a .NET Core solution in macOS using
Visual Studio Code
9/19/2019 • 6 minutes to read • Edit Online

NOTE

Prerequisites

Get started

dotnet new sln -o golden

dotnet new classlib -o library

dotnet sln add library/library.csproj

This document provides the steps and workflow to create a .NET Core solution for macOS. Learn how to create
projects, unit tests, use the debugging tools, and incorporate third-party libraries via NuGet.

This article uses Visual Studio Code on macOS.

Install the .NET Core SDK. The .NET Core SDK includes the latest release of the .NET Core framework and
runtime.

Install Visual Studio Code. During the course of this article, you also install Visual Studio Code extensions that
improve the .NET Core development experience.

Install the Visual Studio Code C# extension by opening Visual Studio Code and pressing F1 to open the Visual
Studio Code palette. Type ext install to see the list of extensions. Select the C# extension. Restart Visual Studio
Code to activate the extension. For more information, see the Visual Studio Code C# Extension documentation.

In this tutorial, you create three projects: a library project, tests for that library project, and a console application
that makes use of the library. You can view or download the source for this topic at the dotnet/samples repository
on GitHub. For download instructions, see Samples and Tutorials.

Start Visual Studio Code. Press Ctrl+` (the backquote or backtick character) or select View > Integrated
Terminal from the menu to open an embedded terminal in Visual Studio Code. You can still open an external shell
with the Explorer Open in Command Prompt command (Open in Terminal on Mac or Linux) if you prefer to
work outside of Visual Studio Code.

Begin by creating a solution file, which serves as a container for one or more .NET Core projects. In the terminal,
run the dotnet new command to create a new solution golden.sln inside a new folder named golden:

Navigate to the new golden folder and execute the following command to create a library project, which produces
two files,library.csproj and Class1.cs, in the library folder :

Execute the dotnet sln command to add the newly created library.csproj project to the solution:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-macos.md
https://www.nuget.org/
https://code.visualstudio.com
https://dotnet.microsoft.com/download
https://code.visualstudio.com
https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://github.com/dotnet/samples/tree/master/core/getting-started/golden
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

</Project>

dotnet add library package Newtonsoft.Json

<ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="12.0.2" />
</ItemGroup>

dotnet restore

using static Newtonsoft.Json.JsonConvert;

namespace Library
{
 public class Thing
 {
 public int Get(int left, int right) =>
 DeserializeObject<int>($"{left + right}");
 }
}

dotnet build

Create the test project

The library.csproj file contains the following information:

Our library methods serialize and deserialize objects in JSON format. To support JSON serialization and
deserialization, add a reference to the Newtonsoft.Json NuGet package. The dotnet add command adds new
items to a project. To add a reference to a NuGet package, use the dotnet add package command and specify the
name of the package:

This adds Newtonsoft.Json and its dependencies to the library project. Alternatively, manually edit the
library.csproj file and add the following node:

Execute dotnet restore , (see note) which restores dependencies and creates an obj folder inside library with three
files in it, including a project.assets.json file:

In the library folder, rename the file Class1.cs to Thing.cs. Replace the code with the following:

The Thing class contains one public method, Get , which returns the sum of two numbers but does so by
converting the sum into a string and then deserializing it into an integer. This makes use of a number of modern
C# features, such as using static directives, expression-bodied members, and string interpolation.

Build the library with the dotnet build command. This produces a library.dll file under
golden/library/bin/Debug/netstandard1.4:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-static
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

dotnet new xunit -o test-library

dotnet sln add test-library/test-library.csproj

dotnet add test-library/test-library.csproj reference library/library.csproj

<ItemGroup>
 <ProjectReference Include="..\library\library.csproj" />
</ItemGroup>

using Library;
using Xunit;

namespace TestApp
{
 public class LibraryTests
 {
 [Fact]
 public void TestThing() {
 Assert.NotEqual(42, new Thing().Get(19, 23));
 }
 }
}

dotnet restore
dotnet test test-library/test-library.csproj

dotnet test test-library/test-library.csproj

Build a test project for the library. From the golden folder, create a new test project:

Add the test project to the solution:

Add a project reference the library you created in the previous section so that the compiler can find and use the
library project. Use the dotnet add reference command:

Alternatively, manually edit the test-library.csproj file and add the following node:

Now that the dependencies have been properly configured, create the tests for your library. Open UnitTest1.cs and
replace its contents with the following code:

Note that you assert the value 42 is not equal to 19+23 (or 42) when you first create the unit test (
Assert.NotEqual), which will fail. An important step in building unit tests is to create the test to fail once first to

confirm its logic.

From the golden folder, execute the following commands:

These commands will recursively find all projects to restore dependencies, build them, and activate the xUnit test
runner to run the tests. The single test fails, as you expect.

Edit the UnitTest1.cs file and change the assertion from Assert.NotEqual to Assert.Equal . Execute the following
command from the golden folder to re-run the test, which passes this time:

Create the console app

dotnet new console -o app

dotnet sln add app/app.csproj

dotnet add app/app.csproj reference library/library.csproj

WriteLine($"The answer is {new Thing().Get(19, 23)}");

using static System.Console;
using Library;

dotnet run -p app/app.csproj

Debug the application

The console app you create over the following steps takes a dependency on the library project you created earlier
and calls its library method when it runs. Using this pattern of development, you see how to create reusable
libraries for multiple projects.

Create a new console application from the golden folder :

Add the console app project to the solution:

Create the dependency on the library by running the dotnet add reference command:

Run dotnet restore (see note) to restore the dependencies of the three projects in the solution. Open Program.cs
and replace the contents of the Main method with the following line:

Add two using directives to the top of the Program.cs file:

Execute the following dotnet run command to run the executable, where the -p option to dotnet run specifies
the project for the main application. The app produces the string "The answer is 42".

Set a breakpoint at the WriteLine statement in the Main method. Do this by either pressing the F9 key when the
cursor is over the WriteLine line or by clicking the mouse in the left margin on the line where you want to set the
breakpoint. A red circle will appear in the margin next to the line of code. When the breakpoint is reached, code
execution will stop before the breakpoint line is executed.

Open the debugger tab by selecting the Debug icon in the Visual Studio Code toolbar, selecting View > Debug
from the menu bar, or using the keyboard shortcut CTRL+SHIFT+D:

NOTE

Press the Play button to start the application under the debugger. The app begins execution and runs to the
breakpoint, where it stops. Step into the Get method and make sure that you have passed in the correct
arguments. Confirm that the answer is 42.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

Get started with .NET Core on macOS using Visual
Studio for Mac
9/23/2019 • 2 minutes to read • Edit Online

NOTE

Prerequisites

Get started

Creating a project

Visual Studio for Mac provides a full-featured Integrated Development Environment (IDE) for developing .NET
Core applications. This topic walks you through building a simple console application using Visual Studio for Mac
and .NET Core.

Your feedback is highly valued. There are two ways you can provide feedback to the development team on Visual Studio for
Mac:

In Visual Studio for Mac, select Help > Report a Problem from the menu or Report a Problem from the Welcome
screen, which will open a window for filing a bug report. You can track your feedback in the Developer Community portal.
To make a suggestion, select Help > Provide a Suggestion from the menu or Provide a Suggestion from the
Welcome screen, which will take you to the Visual Studio for Mac Developer Community webpage.

See the Prerequisites for .NET Core on Mac topic.

Check the .NET Core Support article to ensure you're using a supported version of .NET Core.

If you've already installed the prerequisites and Visual Studio for Mac, skip this section and proceed to Creating a
project. Follow these steps to install the prerequisites and Visual Studio for Mac:

Download the Visual Studio for Mac installer. Run the installer. Read and accept the license agreement. During the
install, select the option to install .NET Core. You're provided the opportunity to install Xamarin, a cross-platform
mobile app development technology. Installing Xamarin and its related components is optional for .NET Core
development. For a walk-through of the Visual Studio for Mac install process, see Visual Studio for Mac
documentation. When the install is complete, start the Visual Studio for Mac IDE.

1. Select New on the Start Window.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-mac-vs.md
https://developercommunity.visualstudio.com/spaces/8/index.html
https://developercommunity.visualstudio.com/content/idea/post.html?space=41
https://docs.microsoft.com/visualstudio/mac/net-core-support
https://visualstudio.microsoft.com/vs/mac/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link
https://docs.microsoft.com/visualstudio/mac/

2. In the New Project dialog, select App under the .NET Core node. Select the Console Application
template followed by Next.

3. If you have more than one version of .NET Core installed, select the target framework for your project.

4. Type "HelloWorld" for the Project Name. Select Create.

5. Wait while the project's dependencies are restored. The project has a single C# file, Program.cs, containing
a Program class with a Main method. The Console.WriteLine statement will output "Hello World!" to the
console when the app is run.

Run the application

Next step

Run the app in Debug mode using ⌘ ↵ (command + enter) or in Release mode using � ⌘ ↵ (option + command
+ enter).

The Building a complete .NET Core solution on macOS using Visual Studio for Mac topic shows you how to build
a complete .NET Core solution that includes a reusable library and unit testing.

Building a complete .NET Core solution on macOS
using Visual Studio for Mac
9/12/2019 • 9 minutes to read • Edit Online

NOTE

Prerequisites

Building a library

Visual Studio for Mac provides a full-featured Integrated Development Environment (IDE) for developing .NET
Core applications. This topic walks you through building a .NET Core solution that includes a reusable library and
unit testing.

This tutorial shows you how to create an application that accepts a search word and a string of text from the user,
counts the number of times the search word appears in the string using a method in a class library, and returns
the result to the user. The solution also includes unit testing for the class library as an introduction to unit testing
concepts. If you prefer to proceed through the tutorial with a complete sample, download the sample solution. For
download instructions, see Samples and Tutorials.

Your feedback is highly valued. There are two ways you can provide feedback to the development team on Visual Studio for
Mac:

In Visual Studio for Mac, select Help > Report a Problem from the menu or Report a Problem from the Welcome
screen, which opens a window for filing a bug report. You can track your feedback in the Developer Community portal.
To make a suggestion, select Help > Provide a Suggestion from the menu or Provide a Suggestion from the
Welcome screen, which takes you to the Visual Studio for Mac Developer Community webpage.

OpenSSL (if running .NET Core 1.1): See the Prerequisites for .NET Core on Mac topic.
.NET Core SDK 1.1 or later
Visual Studio 2017 for Mac

For more information on prerequisites, see the Prerequisites for .NET Core on Mac. For the full system
requirements of Visual Studio 2017 for Mac, see Visual Studio 2017 for Mac Product Family System
Requirements.

1. On the Welcome screen, select New Project. In the New Project dialog under the .NET Core node, select
the .NET Standard Library template. This creates a .NET Standard library that targets .NET Core as well
as any other .NET implementation that supports version 2.0 of the .NET Standard. Select Next.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-mac-vs-full-solution.md
https://github.com/dotnet/samples/blob/master/core/tutorials/using-on-mac-vs-full-solution/WordCounter
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://developercommunity.visualstudio.com/spaces/41/index.html
https://developercommunity.visualstudio.com/content/idea/post.html?space=41
https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/vs/mac/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link
https://docs.microsoft.com/visualstudio/productinfo/vs2017-system-requirements-mac
https://docs.microsoft.com/en-us/dotnet/standard/net-standard

2. Name the project "TextUtils" (a short name for "Text Utilities") and the solution "WordCounter". Leave
Create a project directory within the solution directory checked. Select Create.

3. In the Solution sidebar, expand the TextUtils node to reveal the class file provided by the template,
Class1.cs. Right-click the file, select Rename from the context menu, and rename the file to WordCount.cs.
Open the file and replace the contents with the following code:

using System;
using System.Linq;

namespace TextUtils
{
 public static class WordCount
 {
 public static int GetWordCount(string searchWord, string inputString)
 {
 // Null check these variables and determine if they have values.
 if (string.IsNullOrEmpty(searchWord) || string.IsNullOrEmpty(inputString))
 {
 return 0;
 }

 // Convert the string into an array of words.
 var source = inputString.Split(new char[] { '.', '?', '!', ' ', ';', ':', ',' },
 StringSplitOptions.RemoveEmptyEntries);

 // Create the query. Use ToLowerInvariant to match uppercase/lowercase strings.
 var matchQuery = from word in source
 where word.ToLowerInvariant() == searchWord.ToLowerInvariant()
 select word;

 // Count the matches, which executes the query. Return the result.
 return matchQuery.Count();
 }
 }
}

4. Save the file by using any of three different methods: use the keyboard shortcut ⌘+s, select File > Save
from the menu, or right-click on the file's tab and select Save from the contextual menu. The following
image shows the IDE window:

5. Select Errors in the margin at the bottom of the IDE window to open the Errors panel. Select the Build
Output button.

6. Select Build > Build All from the menu.

The solution builds. The build output panel shows that the build is successful.

Creating a test project
Unit tests provide automated software testing during your development and publishing. The testing framework
that you use in this tutorial is xUnit (version 2.2.0 or later), which is installed automatically when the xUnit test
project is added to the solution in the following steps:

1. In the Solution sidebar, right-click the WordCounter solution and select Add > Add New Project.

2. In the New Project dialog, select Tests from the .NET Core node. Select the xUnit Test Project followed
by Next.

3. Name the new project "TestLibrary" and select Create.

4. In order for the test library to work with the WordCount class, add a reference to the TextUtils project. In
the Solution sidebar, right-click Dependencies under TestLibrary. Select Edit References from the
context menu.

5. In the Edit References dialog, select the TextUtils project on the Projects tab. Select OK.

https://xunit.github.io/

using Xunit;
using TextUtils;
using System.Diagnostics;

namespace TestLibrary
{
 public class TextUtils_GetWordCountShould
 {
 [Fact]
 public void IgnoreCasing()
 {
 var wordCount = WordCount.GetWordCount("Jack", "Jack jack");

 Assert.NotEqual(2, wordCount);
 }
 }
}

6. In the TestLibrary project, rename the UnitTest1.cs file to TextUtilsTests.cs.

7. Open the file and replace the code with the following:

The following image shows the IDE with the unit test code in place. Pay attention to the Assert.NotEqual

statement.

It's important to make a new test fail once to confirm its testing logic is correct. The method passes in the
name "Jack" (uppercase) and a string with "Jack" and "jack" (uppercase and lowercase). If the GetWordCount

method is working properly, it returns a count of two instances of the search word. In order to fail this test
on purpose, you first implement the test asserting that two instances of the search word "Jack" aren't
returned by the GetWordCount method. Continue to the next step to fail the test on purpose.

8. Open the Unit Tests panel on the right side of the screen.

9. Click the Dock icon to keep the panel open.

10. Click the Run All button.

The test fails, which is the correct result. The test method asserts that two instances of the inputString ,
"Jack," aren't returned from the string "Jack jack" provided to the GetWordCount method. Since word casing
was factored out in the GetWordCount method, two instances are returned. The assertion that 2 is not equal
to 2 fails. This is the correct outcome, and the logic of our test is good.

11. Modify the IgnoreCasing test method by changing Assert.NotEqual to Assert.Equal . Save the file by
using the keyboard shortcut ⌘+s, File > Save from the menu, or right-clicking on the file's tab and
selecting Save from the context menu.

You expect that the searchWord "Jack" returns two instances with inputString "Jack jack" passed into
GetWordCount . Run the test again by clicking the Run Tests button in the Unit Tests panel or the Rerun

Tests button in the Test Results panel at the bottom of the screen. The test passes. There are two instances
of "Jack" in the string "Jack jack" (ignoring casing), and the test assertion is true .

12. Testing individual return values with a Fact is only the beginning of what you can do with unit testing.
Another powerful technique allows you to test several values at once using a Theory . Add the following

Adding a console app

[Theory]
[InlineData(0, "Ting", "Does not appear in the string.")]
[InlineData(1, "Ting", "Ting appears once.")]
[InlineData(2, "Ting", "Ting appears twice with Ting.")]
public void CountInstancesCorrectly(int count,
 string searchWord,
 string inputString)
{
 Assert.NotEqual(count, WordCount.GetWordCount(searchWord,
 inputString));
}

method to your TextUtils_GetWordCountShould class. You have two methods in the class after you add this
method:

The CountInstancesCorrectly checks that the GetWordCount method counts correctly. The InlineData
provides a count, a search word, and an input string to check. The test method runs once for each line of
data. Note once again that you're asserting a failure first by using Assert.NotEqual , even when you know
that the counts in the data are correct and that the values match the counts returned by the GetWordCount

method. Performing the step of failing the test on purpose might seem like a waste of time at first, but
checking the logic of the test by failing it first is an important check on the logic of your tests. When you
come across a test method that passes when you expect it to fail, you've found a bug in the logic of the test.
It's worth the effort to take this step every time you create a test method.

13. Save the file and run the tests again. The casing test passes but the three count tests fail. This is exactly what
you expect to happen.

14. Modify the CountInstancesCorrectly test method by changing Assert.NotEqual to Assert.Equal . Save the
file. Run the tests again. All tests pass.

1. In the Solution sidebar, right-click the WordCounter solution. Add a new Console Application project by
selecting the template from the .NET Core > App templates. Select Next. Name the project
WordCounterApp. Select Create to create the project in the solution.

2. In the Solutions sidebar, right-click the Dependencies node of the new WordCounterApp project. In the
Edit References dialog, check TextUtils and select OK.

3. Open the Program.cs file. Replace the code with the following:

using System;
using TextUtils;

namespace WordCounterApp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Enter a search word:");
 var searchWord = Console.ReadLine();
 Console.WriteLine("Provide a string to search:");
 var inputString = Console.ReadLine();

 var wordCount = WordCount.GetWordCount(searchWord, inputString);

 var pluralChar = "s";
 if (wordCount == 1)
 {
 pluralChar = string.Empty;
 }

 Console.WriteLine($"The search word {searchWord} appears " +
 $"{wordCount} time{pluralChar}.");
 }
 }
}

4. To run the app in a console window instead of the IDE, right-click the WordCounterApp project, select
Options, and open the Default node under Configurations. Check the box for Run on external
console. Leave the Pause console output option checked. This setting causes the app to spawn in a
console window so that you can type input for the Console.ReadLine statements. If you leave the app to run
in the IDE, you can only see the output of Console.WriteLine statements. Console.ReadLine statements do
not work in the IDE's Application Output panel.

5. Because the current version of Visual Studio for Mac cannot run the tests when the solution is run, you run
the console app directly. Right-click on the WordCounterApp project and select Run item from the context
menu. If you attempt to run the app with the Play button, the test runner and app fail to run. For more
information on the status of the work on this issue, see xunit/xamarinstudio.xunit (#60). When you run the
app, provide values for the search word and input string at the prompts in the console window. The app
indicates the number of times the search word appears in the string.

6. The last feature to explore is debugging with Visual Studio for Mac. Set a breakpoint on the
Console.WriteLine statement: Select in the left margin of line 23, and you see a red circle appear next to the

line of code. Alternatively, select anywhere on the line of code and select Run > Toggle Breakpoint from
the menu.

7. Right-click the WordCounterApp project. Select Start Debugging item from the context menu. When the
app runs, enter the search word "cat" and "The dog chased the cat, but the cat escaped." for the string to
search. When the Console.WriteLine statement is reached, program execution halts before the statement is
executed. In the Locals tab, you can see the searchWord , inputString , wordCount , and pluralChar values.

https://github.com/xunit/xamarinstudio.xunit/issues/60

See also

8. In the Immediate pane, type "wordCount = 999;" and press Enter. This assigns a nonsense value of 999 to
the wordCount variable showing that you can replace variable values while debugging.

9. In the toolbar, click the continue arrow. Look at the output in the console window. It reports the incorrect
value of 999 that you set when you were debugging the app.

Visual Studio 2017 for Mac Release Notes

https://docs.microsoft.com/visualstudio/releasenotes/vs2017-mac-relnotes

Get started with .NET Core on
Windows/Linux/macOS using the command line
11/7/2019 • 5 minutes to read • Edit Online

Prerequisites

Hello, Console App!

dotnet new console
dotnet run

This topic will show you how to start developing cross-platforms apps in your machine using the .NET Core CLI
tools.

If you're unfamiliar with the .NET Core CLI toolset, read the .NET Core SDK overview.

.NET Core SDK 2.1 or later versions.
A text editor or code editor of your choice.

You can view or download the sample code from the dotnet/samples GitHub repository. For download
instructions, see Samples and Tutorials.

Open a command prompt and create a folder named Hello. Navigate to the folder you created and type the
following:

Let's do a quick walkthrough:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 </PropertyGroup>

</Project>

1. dotnet new console

dotnet new creates an up-to-date Hello.csproj project file with the dependencies necessary to build a
console app. It also creates a Program.cs, a basic file containing the entry point for the application.

Hello.csproj:

The project file specifies everything that's needed to restore dependencies and build the program.

The OutputType tag specifies that we're building an executable, in other words a console application.
The TargetFramework tag specifies what .NET implementation we're targeting. In an advanced scenario,
you can specify multiple target frameworks and build to all those in a single operation. In this tutorial,
we'll stick to building only for .NET Core 2.1.

Program.cs:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-with-xplat-cli.md
https://dotnet.microsoft.com/download
https://github.com/dotnet/samples/tree/master/core/console-apps/HelloMsBuild
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index

using System;

namespace Hello
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

NOTE

IMPORTANT

$ dotnet run
Hello World!

The program starts by using System , which means "bring everything in the System namespace into
scope for this file". The System namespace includes the Console class.

We then define a namespace called Hello . You can change this to anything you want. A class named
Program is defined within that namespace, with a Main method that takes an array of strings as its

argument. This array contains the list of arguments passed in when the compiled program is called. As it
is, this array is not used: all the program is doing is to write "Hello World!" to the console. Later, we'll make
changes to the code that will make use of this argument.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all
commands that require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid
command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in
Azure DevOps Services or in build systems that need to explicitly control the time at which the restore occurs.

dotnet new calls dotnet restore implicitly. dotnet restore calls into NuGet (.NET package manager) to
restore the tree of dependencies. NuGet analyzes the Hello.csproj file, downloads the dependencies
defined in the file (or grabs them from a cache on your machine), and writes the obj/project.assets.json file,
which is necessary to compile and run the sample.

If you're using a .NET Core 1.x version of the SDK, you'll have to call dotnet restore yourself after calling
dotnet new .

2. dotnet run

dotnet run calls dotnet build to ensure that the build targets have been built, and then calls
dotnet <assembly.dll> to run the target application.

Alternatively, you can also execute dotnet build to compile the code without running the build console
applications. This results in a compiled application as a DLL file that can be run with
dotnet bin\Debug\netcoreapp2.1\Hello.dll on Windows (use / for non-Windows systems). You may also

specify arguments to the application as you'll see later on the topic.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://www.nuget.org/

Augmenting the program

$ dotnet bin\Debug\netcoreapp2.1\Hello.dll
Hello World!

As an advanced scenario, it's possible to build the application as a self-contained set of platform-specific
files that can be deployed and run to a machine that doesn't necessarily have .NET Core installed. See
.NET Core Application Deployment for details.

Let's change the program a bit. Fibonacci numbers are fun, so let's add that in addition to use the argument to
greet the person running the app.

using System;

namespace Hello
{
 class Program
 {
 static void Main(string[] args)
 {
 if (args.Length > 0)
 {
 Console.WriteLine($"Hello {args[0]}!");
 }
 else
 {
 Console.WriteLine("Hello!");
 }

 Console.WriteLine("Fibonacci Numbers 1-15:");

 for (int i = 0; i < 15; i++)
 {
 Console.WriteLine($"{i + 1}: {FibonacciNumber(i)}");
 }
 }

 static int FibonacciNumber(int n)
 {
 int a = 0;
 int b = 1;
 int tmp;

 for (int i = 0; i < n; i++)
 {
 tmp = a;
 a = b;
 b += tmp;
 }

 return a;
 }

 }
}

1. Replace the contents of your Program.cs file with the following code:

2. Execute dotnet build to compile the changes.

3. Run the program passing a parameter to the app:

Working with multiple files

$ dotnet run -- John
Hello John!
Fibonacci Numbers 1-15:
1: 0
2: 1
3: 1
4: 2
5: 3
6: 5
7: 8
8: 13
9: 21
10: 34
11: 55
12: 89
13: 144
14: 233
15: 377

And that's it! You can augment Program.cs any way you like.

Single files are fine for simple one-off programs, but if you're building a more complex app, you're probably
going to have multiple source files on your project. Let's build off of the previous Fibonacci example by caching
some Fibonacci values and add some recursive features.

using System;
using System.Collections.Generic;

namespace Hello
{
 public class FibonacciGenerator
 {
 private Dictionary<int, int> _cache = new Dictionary<int, int>();

 private int Fib(int n) => n < 2 ? n : FibValue(n - 1) + FibValue(n - 2);

 private int FibValue(int n)
 {
 if (!_cache.ContainsKey(n))
 {
 _cache.Add(n, Fib(n));
 }

 return _cache[n];
 }

 public IEnumerable<int> Generate(int n)
 {
 for (int i = 0; i < n; i++)
 {
 yield return FibValue(i);
 }
 }
 }
}

1. Add a new file inside the Hello directory named FibonacciGenerator.cs with the following code:

2. Change the Main method in your Program.cs file to instantiate the new class and call its method as in the
following example:

Publish your app

$ dotnet bin\Debug\netcoreapp2.1\publish\Hello.dll
Hello World!

Conclusion

See also

using System;

namespace Hello
{
 class Program
 {
 static void Main(string[] args)
 {
 var generator = new FibonacciGenerator();
 foreach (var digit in generator.Generate(15))
 {
 Console.WriteLine(digit);
 }
 }
 }
}

$ dotnet run
0
1
1
2
3
5
8
13
21
34
55
89
144
233
377

3. Execute dotnet build to compile the changes.

4. Run your app by executing dotnet run . The following shows the program output:

Once you're ready to distribute your app, use the dotnet publish command to generate the publish folder at
bin\debug\netcoreapp2.1\publish\ (use / for non-Windows systems). You can distribute the contents of the
publish folder to other platforms as long as they've already installed the dotnet runtime.

You can run your published app with the dotnet command:

And that's it! Now, you can start using the basic concepts learned here to create your own programs.

Organizing and testing projects with the .NET Core CLI tools
Publish .NET Core apps with the CLI
Learn more about app deployment

Organizing and testing projects with the .NET Core
command line
9/19/2019 • 6 minutes to read • Edit Online

Using folders to organize code

/MyProject
|__AccountInformation.cs
|__MonthlyReportRecords.cs
|__MyProject.csproj
|__Program.cs

/MyProject
|__/Models
 |__AccountInformation.cs
 |__MonthlyReportRecords.cs
|__MyProject.csproj
|__Program.cs

Organizing and testing using the NewTypes Pets Sample
Building the sample

This tutorial follows Get started with .NET Core on Windows/Linux/macOS using the command line, taking you
beyond the creation of a simple console app to develop advanced and well-organized applications. After showing
you how to use folders to organize your code, this tutorial shows you how to extend a console application with the
xUnit testing framework.

If you want to introduce new types into a console app, you can do so by adding files containing the types to the
app. For example if you add files containing AccountInformation and MonthlyReportRecords types to your project,
the project file structure is flat and easy to navigate:

However, this only works well when the size of your project is relatively small. Can you imagine what will happen
if you add 20 types to the project? The project definitely wouldn't be easy to navigate and maintain with that many
files littering the project's root directory.

To organize the project, create a new folder and name it Models to hold the type files. Place the type files into the
Models folder :

Projects that logically group files into folders are easy to navigate and maintain. In the next section, you create a
more complex sample with folders and unit testing.

For the following steps, you can either follow along using the NewTypes Pets Sample or create your own files and
folders. The types are logically organized into a folder structure that permits the addition of more types later, and
tests are also logically placed in folders permitting the addition of more tests later.

The sample contains two types, Dog and Cat , and has them implement a common interface, IPet . For the
NewTypes project, your goal is to organize the pet-related types into a Pets folder. If another set of types is added

later, WildAnimals for example, they're placed in the NewTypes folder alongside the Pets folder. The WildAnimals
folder may contain types for animals that aren't pets, such as Squirrel and Rabbit types. In this way as types are
added, the project remains well organized.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/testing-with-cli.md
https://xunit.github.io/
https://github.com/dotnet/samples/tree/master/core/console-apps/NewTypesMsBuild

/NewTypes
|__/src
 |__/NewTypes
 |__/Pets
 |__Dog.cs
 |__Cat.cs
 |__IPet.cs
 |__Program.cs
 |__NewTypes.csproj

using System;

namespace Pets
{
 public interface IPet
 {
 string TalkToOwner();
 }
}

using System;

namespace Pets
{
 public class Dog : IPet
 {
 public string TalkToOwner() => "Woof!";
 }
}

using System;

namespace Pets
{
 public class Cat : IPet
 {
 public string TalkToOwner() => "Meow!";
 }
}

Create the following folder structure with file content indicated:

IPet.cs:

Dog.cs:

Cat.cs:

Program.cs:

using System;
using Pets;
using System.Collections.Generic;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 List<IPet> pets = new List<IPet>
 {
 new Dog(),
 new Cat()
 };

 foreach (var pet in pets)
 {
 Console.WriteLine(pet.TalkToOwner());
 }
 }
 }
}

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 </PropertyGroup>

</Project>

dotnet run

Woof!
Meow!

Testing the sample

NewTypes.csproj:

Execute the following command:

Obtain the following output:

Optional exercise: You can add a new pet type, such as a Bird , by extending this project. Make the bird's
TalkToOwner method give a Tweet! to the owner. Run the app again. The output will include Tweet!

The NewTypes project is in place, and you've organized it by keeping the pets-related types in a folder. Next, create
your test project and start writing tests with the xUnit test framework. Unit testing allows you to automatically
check the behavior of your pet types to confirm that they're operating properly.

Navigate back to the src folder and create a test folder with a NewTypesTests folder within it. At a command
prompt from the NewTypesTests folder, execute dotnet new xunit . This produces two files: NewTypesTests.csproj
and UnitTest1.cs.

The test project cannot currently test the types in NewTypes and requires a project reference to the NewTypes

project. To add a project reference, use the dotnet add reference command:

https://xunit.github.io/

dotnet add reference ../../src/NewTypes/NewTypes.csproj

<ItemGroup>
 <ProjectReference Include="../../src/NewTypes/NewTypes.csproj" />
</ItemGroup>

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.4.0" />
 <PackageReference Include="xunit" Version="2.4.1" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.4.1" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include="../../src/NewTypes/NewTypes.csproj"/>
 </ItemGroup>

</Project>

Or, you also have the option of manually adding the project reference by adding an <ItemGroup> node to the
NewTypesTests.csproj file:

NewTypesTests.csproj:

The NewTypesTests.csproj file contains the following:

Package reference to Microsoft.NET.Test.Sdk , the .NET testing infrastructure
Package reference to xunit , the xUnit testing framework
Package reference to xunit.runner.visualstudio , the test runner
Project reference to NewTypes , the code to test

Change the name of UnitTest1.cs to PetTests.cs and replace the code in the file with the following:

using System;
using Xunit;
using Pets;

public class PetTests
{
 [Fact]
 public void DogTalkToOwnerReturnsWoof()
 {
 string expected = "Woof!";
 string actual = new Dog().TalkToOwner();

 Assert.NotEqual(expected, actual);
 }

 [Fact]
 public void CatTalkToOwnerReturnsMeow()
 {
 string expected = "Meow!";
 string actual = new Cat().TalkToOwner();

 Assert.NotEqual(expected, actual);
 }
}

NOTE

/NewTypes
|__/src
 |__/NewTypes
 |__/Pets
 |__Dog.cs
 |__Cat.cs
 |__IPet.cs
 |__Program.cs
 |__NewTypes.csproj
|__/test
 |__NewTypesTests
 |__PetTests.cs
 |__NewTypesTests.csproj

Optional exercise: If you added a Bird type earlier that yields a Tweet! to the owner, add a test method to the
PetTests.cs file, BirdTalkToOwnerReturnsTweet , to check that the TalkToOwner method works correctly for the Bird

type.

Although you expect that the expected and actual values are equal, an initial assertion with the Assert.NotEqual

check specifies that these values are not equal. Always initially create a test to fail in order to check the logic of the test. After
you confirm that the test fails, adjust the assertion to allow the test to pass.

The following shows the complete project structure:

Start in the test/NewTypesTests directory. Restore the test project with the dotnet restore command. Run the tests
with the dotnet test command. This command starts the test runner specified in the project file.

NOTE

Test run for c:\Users\ronpet\repos\samples\core\console-
apps\NewTypesMsBuild\test\NewTypesTests\bin\Debug\netcoreapp2.1\NewTypesTests.dll(.NETCoreApp,Version=v2.1)
Microsoft (R) Test Execution Command Line Tool Version 15.8.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
[xUnit.net 00:00:00.77] PetTests.DogTalkToOwnerReturnsWoof [FAIL]
[xUnit.net 00:00:00.78] PetTests.CatTalkToOwnerReturnsMeow [FAIL]
Failed PetTests.DogTalkToOwnerReturnsWoof
Error Message:
 Assert.NotEqual() Failure
Expected: Not "Woof!"
Actual: "Woof!"
Stack Trace:
 at PetTests.DogTalkToOwnerReturnsWoof() in c:\Users\ronpet\repos\samples\core\console-
apps\NewTypesMsBuild\test\NewTypesTests\PetTests.cs:line 13
Failed PetTests.CatTalkToOwnerReturnsMeow
Error Message:
 Assert.NotEqual() Failure
Expected: Not "Meow!"
Actual: "Meow!"
Stack Trace:
 at PetTests.CatTalkToOwnerReturnsMeow() in c:\Users\ronpet\repos\samples\core\console-
apps\NewTypesMsBuild\test\NewTypesTests\PetTests.cs:line 22

Total tests: 2. Passed: 0. Failed: 2. Skipped: 0.
Test Run Failed.
Test execution time: 1.7000 Seconds

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

As expected, testing fails, and the console displays the following output:

Change the assertions of your tests from Assert.NotEqual to Assert.Equal :

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

using System;
using Xunit;
using Pets;

public class PetTests
{
 [Fact]
 public void DogTalkToOwnerReturnsWoof()
 {
 string expected = "Woof!";
 string actual = new Dog().TalkToOwner();

 Assert.Equal(expected, actual);
 }

 [Fact]
 public void CatTalkToOwnerReturnsMeow()
 {
 string expected = "Meow!";
 string actual = new Cat().TalkToOwner();

 Assert.Equal(expected, actual);
 }
}

Test run for c:\Users\ronpet\repos\samples\core\console-
apps\NewTypesMsBuild\test\NewTypesTests\bin\Debug\netcoreapp2.1\NewTypesTests.dll(.NETCoreApp,Version=v2.1)
Microsoft (R) Test Execution Command Line Tool Version 15.8.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...

Total tests: 2. Passed: 2. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 1.6029 Seconds

Re-run the tests with the dotnet test command and obtain the following output:

Testing passes. The pet types' methods return the correct values when talking to the owner.

You've learned techniques for organizing and testing projects using xUnit. Go forward with these techniques
applying them in your own projects. Happy coding!

Developing Libraries with Cross Platform Tools
11/1/2019 • 11 minutes to read • Edit Online

Prerequisites

.NET FRAMEWORK VERSION WHAT TO DOWNLOAD

4.6.1 .NET Framework 4.6.1 Targeting Pack

4.6 .NET Framework 4.6 Targeting Pack

4.5.2 .NET Framework 4.5.2 Developer Pack

4.5.1 .NET Framework 4.5.1 Developer Pack

4.5 Windows Software Development Kit for Windows 8

4.0 Windows SDK for Windows 7 and .NET Framework 4

2.0, 3.0, and 3.5 .NET Framework 3.5 SP1 Runtime (or Windows 8+ version)

How to target the .NET Standard

.NET
STANDA
RD 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

.NET
Core

1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0

.NET
Framew
ork

4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1 N/A

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4 6.4

This article covers how to write libraries for .NET using cross-platform CLI tools. The CLI provides an efficient and
low-level experience that works across any supported OS. You can still build libraries with Visual Studio, and if that
is your preferred experience refer to the Visual Studio guide.

You need the .NET Core SDK and CLI installed on your machine.

For the sections of this document dealing with .NET Framework versions, you need the .NET Framework installed
on a Windows machine.

Additionally, if you wish to support older .NET Framework targets, you need to install targeting/developer packs
for older framework versions from the .NET download archives page. Refer to this table:

If you're not quite familiar with the .NET Standard, refer to the .NET Standard to learn more.

In that article, there is a table which maps .NET Standard versions to various implementations:

1

2 2 2 3

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/libraries.md
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com
https://dotnet.microsoft.com/download/archives
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.0.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.1.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.2.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.3.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.4.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.5.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.6.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.0.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.1.md

Xamarin.
iOS

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14 12.16

Xamarin.
Mac

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8 5.16

Xamarin.
Android

7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0 10.0

Universa
l
Window
s
Platform

10.0 10.0 10.0 10.0 10.0 10.0.162
99

10.0.162
99

10.0.162
99

TBD

Unity 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 TBD

.NET
STANDA
RD 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

1 The versions listed for .NET Framework apply to .NET Core 2.0 SDK and later versions of the tooling. Older versions used a different mapping for .NET

Standard 1.5 and higher. You can download tooling for .NET Core tools for Visual Studio 2015 if you cannot upgrade to Visual Studio 2017.

2 The versions listed here represent the rules that NuGet uses to determine whether a given .NET Standard library is applicable. While NuGet considers

.NET Framework 4.6.1 as supporting .NET Standard 1.5 through 2.0, there are several issues with consuming .NET Standard libraries that were built for

those versions from .NET Framework 4.6.1 projects. For .NET Framework projects that need to use such libraries, we recommend that you upgrade the

project to target .NET Framework 4.7.2 or higher.

3 .NET Framework won't support .NET Standard 2.1 or later versions. For more details, see the announcement of .NET Standard 2.1.

The columns represent .NET Standard versions. Each header cell is a link to a document that shows which APIs
got added in that version of .NET Standard.
The rows represent the different .NET implementations.
The version number in each cell indicates the minimum version of the implementation you'll need in order to
target that .NET Standard version.
For an interactive table, see .NET Standard versions.

Here's what this table means for the purposes of creating a library:

The version of the .NET Standard you pick will be a tradeoff between access to the newest APIs and the ability to
target more .NET implementations and .NET Standard versions. You control the range of targetable platforms and
versions by picking a version of netstandardX.X (Where X.X is a version number) and adding it to your project
file (.csproj or .fsproj).

You have three primary options when targeting the .NET Standard, depending on your needs.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>
</Project>

1. You can use the default version of the .NET Standard supplied by templates - netstandard1.4 - which gives
you access to most APIs on .NET Standard while still being compatible with UWP, .NET Framework 4.6.1,
and the forthcoming .NET Standard 2.0.

https://github.com/dotnet/core/blob/master/release-notes/download-archive.md
https://devblogs.microsoft.com/dotnet/announcing-net-standard-2-1/
https://dotnet.microsoft.com/platform/dotnet-standard#versions

How to target the .NET Framework

NOTE

.NET FRAMEWORK VERSION TFM

.NET Framework 2.0 net20

.NET Framework 3.0 net30

.NET Framework 3.5 net35

.NET Framework 4.0 net40

.NET Framework 4.5 net45

.NET Framework 4.5.1 net451

.NET Framework 4.5.2 net452

.NET Framework 4.6 net46

.NET Framework 4.6.1 net461

.NET Framework 4.6.2 net462

.NET Framework 4.7 net47

.NET Framework 4.8 net48

2. You can use a lower or higher version of the .NET Standard by modifying the value in the TargetFramework

node of your project file.

.NET Standard versions are backward compatible. That means that netstandard1.0 libraries run on
netstandard1.1 platforms and higher. However, there is no forward compatibility - lower .NET Standard

platforms cannot reference higher ones. This means that netstandard1.0 libraries cannot reference libraries
targeting netstandard1.1 or higher. Select the Standard version that has the right mix of APIs and platform
support for your needs. We recommend netstandard1.4 for now.

3. If you want to target the .NET Framework versions 4.0 or below, or you wish to use an API available in the
.NET Framework but not in the .NET Standard (for example, System.Drawing), read the following sections
and learn how to multitarget.

These instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites to get
dependencies installed.

Keep in mind that some of the .NET Framework versions used here are no longer in support. Refer to the .NET
Framework Support Lifecycle Policy FAQ about unsupported versions.

If you want to reach the maximum number of developers and projects, use the .NET Framework 4.0 as your
baseline target. To target the .NET Framework, you will need to begin by using the correct Target Framework
Moniker (TFM) that corresponds to the .NET Framework version you wish to support.

https://support.microsoft.com/gp/framework_faq/en-us

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net40</TargetFramework>
 </PropertyGroup>
</Project>

How to Multitarget

NOTE

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFrameworks>netstandard1.4;net40;net45</TargetFrameworks>
 </PropertyGroup>

 <!-- Need to conditionally bring in references for the .NET Framework 4.0 target -->
 <ItemGroup Condition="'$(TargetFramework)' == 'net40'">
 <Reference Include="System.Net" />
 </ItemGroup>

 <!-- Need to conditionally bring in references for the .NET Framework 4.5 target -->
 <ItemGroup Condition="'$(TargetFramework)' == 'net45'">
 <Reference Include="System.Net.Http" />
 <Reference Include="System.Threading.Tasks" />
 </ItemGroup>
</Project>

You then insert this TFM into the TargetFramework section of your project file. For example, here's how you would
write a library which targets the .NET Framework 4.0:

And that's it! Although this compiled only for the .NET Framework 4, you can use the library on newer versions of
the .NET Framework.

The following instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites section
to learn which dependencies you need to install and where to download them from.

You may need to target older versions of the .NET Framework when your project supports both the .NET
Framework and .NET Core. In this scenario, if you want to use newer APIs and language constructs for the newer
targets, use #if directives in your code. You also might need to add different packages and dependencies for each
platform you're targeting to include the different APIs needed for each case.

For example, let's say you have a library that performs networking operations over HTTP. For .NET Standard and
the .NET Framework versions 4.5 or higher, you can use the HttpClient class from the System.Net.Http

namespace. However, earlier versions of the .NET Framework don't have the HttpClient class, so you could use
the WebClient class from the System.Net namespace for those instead.

Your project file could look like this:

You'll notice three major changes here:

1. The TargetFramework node has been replaced by TargetFrameworks , and three TFMs are expressed inside.
2. There is an <ItemGroup> node for the net40 target pulling in one .NET Framework reference.
3. There is an <ItemGroup> node for the net45 target pulling in two .NET Framework references.

The build system is aware of the following preprocessor symbols used in #if directives:

TARGET FRAMEWORKS SYMBOLS

.NET Framework NETFRAMEWORK , NET20 , NET35 , NET40 , NET45 , NET451 ,
NET452 , NET46 , NET461 , NET462 , NET47 , NET471 ,
NET472 , NET48

.NET Standard NETSTANDARD , NETSTANDARD1_0 , NETSTANDARD1_1 ,
NETSTANDARD1_2 , NETSTANDARD1_3 , NETSTANDARD1_4 ,
NETSTANDARD1_5 , NETSTANDARD1_6 , NETSTANDARD2_0 ,
NETSTANDARD2_1

.NET Core NETCOREAPP , NETCOREAPP1_0 , NETCOREAPP1_1 ,
NETCOREAPP2_0 , NETCOREAPP2_1 , NETCOREAPP2_2 ,
NETCOREAPP3_0

Here is an example making use of conditional compilation per-target:

using System;
using System.Text.RegularExpressions;
#if NET40
// This only compiles for the .NET Framework 4 targets
using System.Net;
#else
 // This compiles for all other targets
using System.Net.Http;
using System.Threading.Tasks;
#endif

namespace MultitargetLib
{
 public class Library
 {
#if NET40
 private readonly WebClient _client = new WebClient();
 private readonly object _locker = new object();
#else
 private readonly HttpClient _client = new HttpClient();
#endif

#if NET40
 // .NET Framework 4.0 does not have async/await
 public string GetDotNetCount()
 {
 string url = "https://www.dotnetfoundation.org/";

 var uri = new Uri(url);

 string result = "";

 // Lock here to provide thread-safety.
 lock(_locker)
 {
 result = _client.DownloadString(uri);
 }

 int dotNetCount = Regex.Matches(result, ".NET").Count;

 return $"Dotnet Foundation mentions .NET {dotNetCount} times!";
 }
#else
 // .NET 4.5+ can use async/await!
 public async Task<string> GetDotNetCountAsync()
 {
 string url = "https://www.dotnetfoundation.org/";

 // HttpClient is thread-safe, so no need to explicitly lock here
 var result = await _client.GetStringAsync(url);

 int dotNetCount = Regex.Matches(result, ".NET").Count;

 return $"dotnetfoundation.org mentions .NET {dotNetCount} times in its HTML!";
 }
#endif
 }
}

net40/
net45/
netstandard1.4/

If you build this project with dotnet build , you'll notice three directories under the bin/ folder :

How to test libraries on .NET Core

NOTE

Each of these contain the .dll files for each target.

It's important to be able to test across platforms. You can use either xUnit or MSTest out of the box. Both are
perfectly suitable for unit testing your library on .NET Core. How you set up your solution with test projects will
depend on the structure of your solution. The following example assumes that the test and source directories live
in the same top-level directory.

This uses some .NET Core CLI commands. See dotnet new and dotnet sln for more information.

mkdir SolutionWithSrcAndTest
cd SolutionWithSrcAndTest
dotnet new sln
dotnet new classlib -o MyProject
dotnet new xunit -o MyProject.Test
dotnet sln add MyProject/MyProject.csproj
dotnet sln add MyProject.Test/MyProject.Test.csproj

/SolutionWithSrcAndTest
|__SolutionWithSrcAndTest.sln
|__MyProject/
|__MyProject.Test/

cd MyProject.Test
dotnet add reference ../MyProject/MyProject.csproj

dotnet restore
dotnet build

NOTE

1. Set up your solution. You can do so with the following commands:

This will create projects and link them together in a solution. Your directory for SolutionWithSrcAndTest

should look like this:

2. Navigate to the test project's directory and add a reference to MyProject.Test from MyProject .

3. Restore packages and build projects:

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands
that require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in
certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps
Services or in build systems that need to explicitly control the time at which the restore occurs.

4. Verify that xUnit runs by executing the dotnet test command. If you chose to use MSTest, then the MSTest
console runner should run instead.

And that's it! You can now test your library across all platforms using command line tools. To continue testing now
that you have everything set up, testing your library is very simple:

https://xunit.github.io/
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

How to use multiple projects

using AwesomeLibrary.CSharp;

public Task DoThings(Data data)
{
 var convertResult = await AwesomeLibrary.ConvertAsync(data);
 var result = AwesomeLibrary.Process(convertResult);
 // do something with result
}

open AwesomeLibrary.FSharp

let doWork data = async {
 let! result = AwesomeLibrary.AsyncConvert data // Uses an F# async function rather than C# async method
 // do something with result
}

mkdir AwesomeLibrary && cd AwesomeLibrary
dotnet new sln
mkdir AwesomeLibrary.Core && cd AwesomeLibrary.Core && dotnet new classlib
cd ..
mkdir AwesomeLibrary.CSharp && cd AwesomeLibrary.CSharp && dotnet new classlib
cd ..
mkdir AwesomeLibrary.FSharp && cd AwesomeLibrary.FSharp && dotnet new classlib -lang F#
cd ..
dotnet sln add AwesomeLibrary.Core/AwesomeLibrary.Core.csproj
dotnet sln add AwesomeLibrary.CSharp/AwesomeLibrary.CSharp.csproj
dotnet sln add AwesomeLibrary.FSharp/AwesomeLibrary.FSharp.fsproj

Project-to-project referencing

1. Make changes to your library.
2. Run tests from the command line, in your test directory, with dotnet test command.

Your code will be automatically rebuilt when you invoke dotnet test command.

A common need for larger libraries is to place functionality in different projects.

Imagine you wished to build a library which could be consumed in idiomatic C# and F#. That would mean that
consumers of your library consume them in ways which are natural to C# or F#. For example, in C# you might
consume the library like this:

In F#, it might look like this:

Consumption scenarios like this mean that the APIs being accessed have to have a different structure for C# and
F#. A common approach to accomplishing this is to factor all of the logic of a library into a core project, with C#
and F# projects defining the API layers that call into that core project. The rest of the section will use the following
names:

AwesomeLibrary.Core - A core project which contains all logic for the library
AwesomeLibrary.CSharp - A project with public APIs intended for consumption in C#
AwesomeLibrary.FSharp - A project with public APIs intended for consumption in F#

You can run the following commands in your terminal to produce the same structure as this guide:

This will add the three projects above and a solution file which links them together. Creating the solution file and
linking projects will allow you to restore and build projects from a top-level.

dotnet add reference ../AwesomeLibrary.Core/AwesomeLibrary.Core.csproj

<ItemGroup>
 <ProjectReference Include="..\AwesomeLibrary.Core\AwesomeLibrary.Core.csproj" />
</ItemGroup>

Structuring a solution

The best way to reference a project is to use the .NET Core CLI to add a project reference. From the
AwesomeLibrary.CSharp and AwesomeLibrary.FSharp project directories, you can run the following
command:

The project files for both AwesomeLibrary.CSharp and AwesomeLibrary.FSharp will now reference
AwesomeLibrary.Core as a ProjectReference target. You can verify this by inspecting the project files and seeing
the following in them:

You can add this section to each project file manually if you prefer not to use the .NET Core CLI.

Another important aspect of multi-project solutions is establishing a good overall project structure. You can
organize code however you like, and as long as you link each project to your solution file with dotnet sln add , you
will be able to run dotnet restore and dotnet build at the solution level.

Create a .NET Core application with plugins
11/7/2019 • 8 minutes to read • Edit Online

Prerequisites

Create the application

This tutorial shows you how to create a custom AssemblyLoadContext to load plugins. An
AssemblyDependencyResolver is used to resolve the dependencies of the plugin. The tutorial correctly isolates the
plugin's dependencies from the hosting application. You'll learn how to:

Structure a project to support plugins.
Create a custom AssemblyLoadContext to load each plugin.
Use the System.Runtime.Loader.AssemblyDependencyResolver type to allow plugins to have dependencies.
Author plugins that can be easily deployed by just copying the build artifacts.

Install the .NET Core 3.0 SDK or a newer version.

The first step is to create the application:

dotnet new console -o AppWithPlugin

dotnet new sln

dotnet sln add AppWithPlugin/AppWithPlugin.csproj

1. Create a new folder, and in that folder run the following command:

2. To make building the project easier, create a Visual Studio solution file in the same folder. Run the following
command:

3. Run the following command to add the app project to the solution:

Now we can fill in the skeleton of our application. Replace the code in the AppWithPlugin/Program.cs file with the
following code:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/creating-app-with-plugin-support.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblydependencyresolver
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblydependencyresolver
https://dotnet.microsoft.com/download

using PluginBase;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Reflection;

namespace AppWithPlugin
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 if (args.Length == 1 && args[0] == "/d")
 {
 Console.WriteLine("Waiting for any key...");
 Console.ReadLine();
 }

 // Load commands from plugins.

 if (args.Length == 0)
 {
 Console.WriteLine("Commands: ");
 // Output the loaded commands.
 }
 else
 {
 foreach (string commandName in args)
 {
 Console.WriteLine($"-- {commandName} --");

 // Execute the command with the name passed as an argument.

 Console.WriteLine();
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
}

Create the plugin interfaces
The next step in building an app with plugins is defining the interface the plugins need to implement. We suggest
that you make a class library that contains any types that you plan to use for communicating between your app and
plugins. This division allows you to publish your plugin interface as a package without having to ship your full
application.

In the root folder of the project, run dotnet new classlib -o PluginBase . Also, run
dotnet sln add PluginBase/PluginBase.csproj to add the project to the solution file. Delete the
PluginBase/Class1.cs file, and create a new file in the PluginBase folder named ICommand.cs with the following

interface definition:

namespace PluginBase
{
 public interface ICommand
 {
 string Name { get; }
 string Description { get; }

 int Execute();
 }
}

string[] pluginPaths = new string[]
{
 // Paths to plugins to load.
};

IEnumerable<ICommand> commands = pluginPaths.SelectMany(pluginPath =>
{
 Assembly pluginAssembly = LoadPlugin(pluginPath);
 return CreateCommands(pluginAssembly);
}).ToList();

foreach (ICommand command in commands)
{
 Console.WriteLine($"{command.Name}\t - {command.Description}");
}

ICommand command = commands.FirstOrDefault(c => c.Name == commandName);
if (command == null)
{
 Console.WriteLine("No such command is known.");
 return;
}

command.Execute();

This ICommand interface is the interface that all of the plugins will implement.

Now that the ICommand interface is defined, the application project can be filled in a little more. Add a reference
from the AppWithPlugin project to the PluginBase project with the
dotnet add AppWithPlugin\AppWithPlugin.csproj reference PluginBase\PluginBase.csproj command from the root

folder.

Replace the // Load commands from plugins comment with the following code snippet to enable it to load plugins
from given file paths:

Then replace the // Output the loaded commands comment with the following code snippet:

Replace the // Execute the command with the name passed as an argument comment with the following snippet:

And finally, add static methods to the Program class named LoadPlugin and CreateCommands , as shown here:

static Assembly LoadPlugin(string relativePath)
{
 throw new NotImplementedException();
}

static IEnumerable<ICommand> CreateCommands(Assembly assembly)
{
 int count = 0;

 foreach (Type type in assembly.GetTypes())
 {
 if (typeof(ICommand).IsAssignableFrom(type))
 {
 ICommand result = Activator.CreateInstance(type) as ICommand;
 if (result != null)
 {
 count++;
 yield return result;
 }
 }
 }

 if (count == 0)
 {
 string availableTypes = string.Join(",", assembly.GetTypes().Select(t => t.FullName));
 throw new ApplicationException(
 $"Can't find any type which implements ICommand in {assembly} from {assembly.Location}.\n" +
 $"Available types: {availableTypes}");
 }
}

Load plugins
Now the application can correctly load and instantiate commands from loaded plugin assemblies, but it's still
unable to load the plugin assemblies. Create a file named PluginLoadContext.cs in the AppWithPlugin folder with
the following contents:

using System;
using System.Reflection;
using System.Runtime.Loader;

namespace AppWithPlugin
{
 class PluginLoadContext : AssemblyLoadContext
 {
 private AssemblyDependencyResolver _resolver;

 public PluginLoadContext(string pluginPath)
 {
 _resolver = new AssemblyDependencyResolver(pluginPath);
 }

 protected override Assembly Load(AssemblyName assemblyName)
 {
 string assemblyPath = _resolver.ResolveAssemblyToPath(assemblyName);
 if (assemblyPath != null)
 {
 return LoadFromAssemblyPath(assemblyPath);
 }

 return null;
 }

 protected override IntPtr LoadUnmanagedDll(string unmanagedDllName)
 {
 string libraryPath = _resolver.ResolveUnmanagedDllToPath(unmanagedDllName);
 if (libraryPath != null)
 {
 return LoadUnmanagedDllFromPath(libraryPath);
 }

 return IntPtr.Zero;
 }
 }
}

The PluginLoadContext type derives from AssemblyLoadContext. The AssemblyLoadContext type is a special type in
the runtime that allows developers to isolate loaded assemblies into different groups to ensure that assembly
versions don't conflict. Additionally, a custom AssemblyLoadContext can choose different paths to load assemblies
from and override the default behavior. The PluginLoadContext uses an instance of the AssemblyDependencyResolver

type introduced in .NET Core 3.0 to resolve assembly names to paths. The AssemblyDependencyResolver object is
constructed with the path to a .NET class library. It resolves assemblies and native libraries to their relative paths
based on the .deps.json file for the class library whose path was passed to the AssemblyDependencyResolver

constructor. The custom AssemblyLoadContext enables plugins to have their own dependencies, and the
AssemblyDependencyResolver makes it easy to correctly load the dependencies.

Now that the AppWithPlugin project has the PluginLoadContext type, update the Program.LoadPlugin method with
the following body:

https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext

static Assembly LoadPlugin(string relativePath)
{
 // Navigate up to the solution root
 string root = Path.GetFullPath(Path.Combine(
 Path.GetDirectoryName(
 Path.GetDirectoryName(
 Path.GetDirectoryName(
 Path.GetDirectoryName(
 Path.GetDirectoryName(typeof(Program).Assembly.Location)))))));

 string pluginLocation = Path.GetFullPath(Path.Combine(root, relativePath.Replace('\\',
Path.DirectorySeparatorChar)));
 Console.WriteLine($"Loading commands from: {pluginLocation}");
 PluginLoadContext loadContext = new PluginLoadContext(pluginLocation);
 return loadContext.LoadFromAssemblyName(new
AssemblyName(Path.GetFileNameWithoutExtension(pluginLocation)));
}

Simple plugin with no dependencies

using PluginBase;
using System;

namespace HelloPlugin
{
 public class HelloCommand : ICommand
 {
 public string Name { get => "hello"; }
 public string Description { get => "Displays hello message."; }

 public int Execute()
 {
 Console.WriteLine("Hello !!!");
 return 0;
 }
 }
}

By using a different PluginLoadContext instance for each plugin, the plugins can have different or even conflicting
dependencies without issue.

Back in the root folder, do the following:

dotnet new classlib -o HelloPlugin

dotnet sln add HelloPlugin/HelloPlugin.csproj

1. Run the following command to create a new class library project named HelloPlugin :

2. Run the following command to add the project to the AppWithPlugin solution:

3. Replace the HelloPlugin/Class1.cs file with a file named HelloCommand.cs with the following contents:

Now, open the HelloPlugin.csproj file. It should look similar to the following:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

</Project>

<ItemGroup>
<ProjectReference Include="..\PluginBase\PluginBase.csproj">
 <Private>false</Private>
</ProjectReference>
</ItemGroup>

Plugin with library dependencies

Other examples in the sample

Reference a plugin from a NuGet package

In between the <Project> tags, add the following elements:

The <Private>false</Private> element is important. This tells MSBuild to not copy PluginBase.dll to the output
directory for HelloPlugin. If the PluginBase.dll assembly is present in the output directory, PluginLoadContext will
find the assembly there and load it when it loads the HelloPlugin.dll assembly. At this point, the
HelloPlugin.HelloCommand type will implement the ICommand interface from the PluginBase.dll in the output

directory of the HelloPlugin project, not the ICommand interface that is loaded into the default load context. Since
the runtime sees these two types as different types from different assemblies, the
AppWithPlugin.Program.CreateCommands method won't find the commands. As a result, the <Private>false</Private>

metadata is required for the reference to the assembly containing the plugin interfaces.

Now that the HelloPlugin project is complete, we should update the AppWithPlugin project to know where the
HelloPlugin plugin can be found. After the // Paths to plugins to load comment, add
@"HelloPlugin\bin\Debug\netcoreapp3.0\HelloPlugin.dll" as an element of the pluginPaths array.

Almost all plugins are more complex than a simple "Hello World", and many plugins have dependencies on other
libraries. The JsonPlugin and OldJson plugin projects in the sample show two examples of plugins with NuGet
package dependencies on Newtonsoft.Json . The project files themselves don't have any special information for the
project references, and (after adding the plugin paths to the pluginPaths array) the plugins run perfectly, even if
run in the same execution of the AppWithPlugin app. However, these projects don't copy the referenced assemblies
to their output directory, so the assemblies need to be present on the user's machine for the plugins to work. There
are two ways to work around this problem. The first option is to use the dotnet publish command to publish the
class library. Alternatively, if you want to be able to use the output of dotnet build for your plugin, you can add the
<CopyLocalLockFileAssemblies>true</CopyLocalLockFileAssemblies> property between the <PropertyGroup> tags in

the plugin's project file. See the XcopyablePlugin plugin project for an example.

The complete source code for this tutorial can be found in the dotnet/samples repository. The completed sample
includes a few other examples of AssemblyDependencyResolver behavior. For example, the
AssemblyDependencyResolver object can also resolve native libraries as well as localized satellite assemblies included

in NuGet packages. The UVPlugin and FrenchPlugin in the samples repository demonstrate these scenarios.

Let's say that there is an app A that has a plugin interface defined in the NuGet package named A.PluginBase . How
do you reference the package correctly in your plugin project? For project references, using the

https://github.com/dotnet/samples/tree/master/core/extensions/AppWithPlugin

<PackageReference Include="A.PluginBase" Version="1.0.0">
 <ExcludeAssets>runtime</ExcludeAssets>
</PackageReference>

Plugin target framework recommendations

Plugin framework references

<Private>false</Private> metadata on the ProjectReference element in the project file prevented the dll from
being copied to the output.

To correctly reference the A.PluginBase package, you want to change the <PackageReference> element in the
project file to the following:

This prevents the A.PluginBase assemblies from being copied to the output directory of your plugin and ensures
that your plugin will use A's version of A.PluginBase .

Because plugin dependency loading uses the .deps.json file, there is a gotcha related to the plugin's target
framework. Specifically, your plugins should target a runtime, such as .NET Core 3.0, instead of a version of .NET
Standard. The .deps.json file is generated based on which framework the project targets, and since many .NET
Standard-compatible packages ship reference assemblies for building against .NET Standard and implementation
assemblies for specific runtimes, the .deps.json may not correctly see implementation assemblies, or it may grab the
.NET Standard version of an assembly instead of the .NET Core version you expect.

Currently, plugins can't introduce new frameworks into the process. For example, you can't load a plugin that uses
the Microsoft.AspNetCore.App framework into an application that only uses the root Microsoft.NETCore.App

framework. The host application must declare references to all frameworks needed by plugins.

Get started with ASP.NET Core
3/12/2019 • 2 minutes to read • Edit Online

For tutorials about developing ASP.NET Core web applications, see ASP.NET Core Tutorials.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/aspnet-core.md
https://docs.microsoft.com/aspnet/core/tutorials

Write a custom .NET Core host to control the .NET
runtime from your native code
9/13/2019 • 21 minutes to read • Edit Online

Prerequisites

Hosting APIs

Sample Hosts

Create a host using NetHost.h and HostFxr.h

Like all managed code, .NET Core applications are executed by a host. The host is responsible for starting the
runtime (including components like the JIT and garbage collector) and invoking managed entry points.

Hosting the .NET Core runtime is an advanced scenario and, in most cases, .NET Core developers don't need to
worry about hosting because .NET Core build processes provide a default host to run .NET Core applications. In
some specialized circumstances, though, it can be useful to explicitly host the .NET Core runtime, either as a means
of invoking managed code in a native process or in order to gain more control over how the runtime works.

This article gives an overview of the steps necessary to start the .NET Core runtime from native code and execute
managed code in it.

Because hosts are native applications, this tutorial will cover constructing a C++ application to host .NET Core. You
will need a C++ development environment (such as that provided by Visual Studio).

You will also want a simple .NET Core application to test the host with, so you should install the .NET Core SDK
and build a small .NET Core test app (such as a 'Hello World' app). The 'Hello World' app created by the new .NET
Core console project template is sufficient.

There are three different APIs that can be used to host .NET Core. This document (and its associated samples)
cover all options.

The preferred method of hosting the .NET Core runtime in .NET Core 3.0 and above is with the nethost and
hostfxr libraries' APIs. These entry points handle the complexity of finding and setting up the runtime for

initialization and allow both launching a managed application and calling into a static managed method.
The preferred method of hosting the .NET Core runtime prior to .NET Core 3.0 is with the CoreClrHost.h API.
This API exposes functions for easily starting and stopping the runtime and invoking managed code (either by
launching a managed exe or by calling static managed methods).
.NET Core can also be hosted with the ICLRRuntimeHost4 interface in mscoree.h. This API has been around
longer than CoreClrHost.h, so you may have seen older hosts using it. It still works and allows a bit more
control over the hosting process than CoreClrHost. For most scenarios, though, CoreClrHost.h is preferred now
because of its simpler APIs.

Sample hosts demonstrating the steps outlined in the tutorials below are available in the dotnet/samples GitHub
repository. Comments in the samples clearly associate the numbered steps from these tutorials with where they're
performed in the sample. For download instructions, see Samples and Tutorials.

Keep in mind that the sample hosts are meant to be used for learning purposes, so they are light on error checking
and are designed to emphasize readability over efficiency.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/netcore-hosting.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://dotnet.microsoft.com/download
https://github.com/dotnet/samples/tree/master/core/hosting
https://github.com/dotnet/coreclr/blob/master/src/coreclr/hosts/inc/coreclrhost.h
https://github.com/dotnet/coreclr/blob/master/src/pal/prebuilt/inc/mscoree.h
https://github.com/dotnet/samples/tree/master/core/hosting
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index

Step 1 - Load HostFxr and get exported hosting functions

// Using the nethost library, discover the location of hostfxr and get exports
bool load_hostfxr()
{
 // Pre-allocate a large buffer for the path to hostfxr
 char_t buffer[MAX_PATH];
 size_t buffer_size = sizeof(buffer) / sizeof(char_t);
 int rc = get_hostfxr_path(buffer, &buffer_size, nullptr);
 if (rc != 0)
 return false;

 // Load hostfxr and get desired exports
 void *lib = load_library(buffer);
 init_fptr = (hostfxr_initialize_for_runtime_config_fn)get_export(lib,
"hostfxr_initialize_for_runtime_config");
 get_delegate_fptr = (hostfxr_get_runtime_delegate_fn)get_export(lib, "hostfxr_get_runtime_delegate");
 close_fptr = (hostfxr_close_fn)get_export(lib, "hostfxr_close");

 return (init_fptr && get_delegate_fptr && close_fptr);
}

Step 2 - Initialize and start the .NET Core runtime

The following steps detail how to use the nethost and hostfxr libraries to start the .NET Core runtime in a native
application and call into a managed static method. The sample uses the nethost header and library installed with
the .NET SDK and copies of the coreclr_delegates.h and hostfxr.h files from the dotnet/core-setup repository.

The nethost library provides the get_hostfxr_path function for locating the hostfxr library. The hostfxr library
exposes functions for hosting the .NET Core runtime. The full list of functions can be found in hostfxr.h and the
native hosting design document. The sample and this tutorial use the following:

hostfxr_initialize_for_runtime_config : Initializes a host context and prepares for initialization of the .NET Core
runtime using the specified runtime configuration.
hostfxr_get_runtime_delegate : Gets a delegate for runtime functionality.
hostfxr_close : Closes a host context.

The hostfxr library is found using get_hostfxr_path . It is then loaded and its exports are retrieved.

The hostfxr_initialize_for_runtime_config and hostfxr_get_runtime_delegate functions initialize and start the
.NET Core runtime using the runtime configuration for the managed component that will be loaded. The
hostfxr_get_runtime_delegate function is used to get a runtime delegate that allows loading a managed assembly

and getting a function pointer to a static method in that assembly.

https://github.com/dotnet/samples/tree/master/core/hosting/HostWithHostFxr
https://github.com/dotnet/core-setup/blob/master/src/corehost/cli/coreclr_delegates.h
https://github.com/dotnet/core-setup/blob/master/src/corehost/cli/hostfxr.h
https://github.com/dotnet/core-setup
https://github.com/dotnet/core-setup/blob/master/src/corehost/cli/hostfxr.h
https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/native-hosting.md

// Load and initialize .NET Core and get desired function pointer for scenario
load_assembly_and_get_function_pointer_fn get_dotnet_load_assembly(const char_t *config_path)
{
 // Load .NET Core
 void *load_assembly_and_get_function_pointer = nullptr;
 hostfxr_handle cxt = nullptr;
 int rc = init_fptr(config_path, nullptr, &cxt);
 if (rc != 0 || cxt == nullptr)
 {
 std::cerr << "Init failed: " << std::hex << std::showbase << rc << std::endl;
 close_fptr(cxt);
 return nullptr;
 }

 // Get the load assembly function pointer
 rc = get_delegate_fptr(
 cxt,
 hdt_load_assembly_and_get_function_pointer,
 &load_assembly_and_get_function_pointer);
 if (rc != 0 || load_assembly_and_get_function_pointer == nullptr)
 std::cerr << "Get delegate failed: " << std::hex << std::showbase << rc << std::endl;

 close_fptr(cxt);
 return (load_assembly_and_get_function_pointer_fn)load_assembly_and_get_function_pointer;
}

Step 3 - Load managed assembly and get function pointer to a managed method

// Function pointer to managed delegate
component_entry_point_fn hello = nullptr;
int rc = load_assembly_and_get_function_pointer(
 dotnetlib_path.c_str(),
 dotnet_type,
 dotnet_type_method,
 nullptr /*delegate_type_name*/,
 nullptr,
 (void**)&hello);

public delegate int ComponentEntryPoint(IntPtr args, int sizeBytes);

Step 4 - Run managed code!

lib_args args
{
 STR("from host!"),
 i
};

hello(&args, sizeof(args));

The runtime delegate is called to load the managed assembly and get a function pointer to a managed method.
The delegate requires the assembly path, type name, and method name as inputs and returns a function pointer
that can be used to invoke the managed method.

By passing nullptr as the delegate type name when calling the runtime delegate, the sample uses a default
signature for the managed method:

A different signature can be used by specifying the delegate type name when calling the runtime delegate.

The native host can now call the managed method and pass it the desired parameters.

Create a host using CoreClrHost.h

Step 1 - Find and load CoreCLR

HMODULE coreClr = LoadLibraryExA(coreClrPath.c_str(), NULL, 0);

Step 2 - Get .NET Core hosting functions

coreclr_initialize_ptr initializeCoreClr = (coreclr_initialize_ptr)GetProcAddress(coreClr,
"coreclr_initialize");
coreclr_create_delegate_ptr createManagedDelegate = (coreclr_create_delegate_ptr)GetProcAddress(coreClr,
"coreclr_create_delegate");
coreclr_shutdown_ptr shutdownCoreClr = (coreclr_shutdown_ptr)GetProcAddress(coreClr, "coreclr_shutdown");

Step 3 - Prepare runtime properties

The following steps detail how to use the CoreClrHost.h API to start the .NET Core runtime in a native application
and call into a managed static method. The code snippets in this document use some Windows-specific APIs, but
the full sample host shows both Windows and Linux code paths.

The Unix CoreRun host shows a more complex, real-world example of hosting using coreclrhost.h.

The .NET Core runtime APIs are in coreclr.dll (on Windows), in libcoreclr.so (on Linux), or in libcoreclr.dylib (on
macOS). The first step to hosting .NET Core is to load the CoreCLR library. Some hosts probe different paths or
use input parameters to find the library while others know to load it from a certain path (next to the host, for
example, or from a machine-wide location).

Once found, the library is loaded with LoadLibraryEx (on Windows) or dlopen (on Linux/Mac).

CoreClrHost has several important methods useful for hosting .NET Core:

coreclr_initialize : Starts the .NET Core runtime and sets up the default (and only) AppDomain.
coreclr_execute_assembly : Executes a managed assembly.
coreclr_create_delegate : Creates a function pointer to a managed method.
coreclr_shutdown : Shuts down the .NET Core runtime.
coreclr_shutdown_2 : Like coreclr_shutdown , but also retrieves the managed code's exit code.

After loading the CoreCLR library, the next step is to get references to these functions using GetProcAddress (on
Windows) or dlsym (on Linux/Mac).

Before starting the runtime, it is necessary to prepare some properties to specify behavior (especially concerning
the assembly loader).

Common properties include:

TRUSTED_PLATFORM_ASSEMBLIES This is a list of assembly paths (delimited by ';' on Windows and ':' on Linux)
which the runtime will be able to resolve by default. Some hosts have hard-coded manifests listing assemblies
they can load. Others will put any library in certain locations (next to coreclr.dll, for example) on this list.
APP_PATHS This is a list of paths to probe in for an assembly if it can't be found in the trusted platform

assemblies (TPA) list. Because the host has more control over which assemblies are loaded using the TPA list, it
is a best practice for hosts to determine which assemblies they expect to load and list them explicitly. If probing
at runtime is needed, however, this property can enable that scenario.
APP_NI_PATHS This list is similar to APP_PATHS except that it's meant to be paths that will be probed for native

images.
NATIVE_DLL_SEARCH_DIRECTORIES This property is a list of paths the loader should probe when looking for native

libraries called via p/invoke.

https://github.com/dotnet/samples/tree/master/core/hosting/HostWithCoreClrHost
https://github.com/dotnet/coreclr/tree/master/src/coreclr/hosts/unixcorerun

void BuildTpaList(const char* directory, const char* extension, std::string& tpaList)
{
 // This will add all files with a .dll extension to the TPA list.
 // This will include unmanaged assemblies (coreclr.dll, for example) that don't
 // belong on the TPA list. In a real host, only managed assemblies that the host
 // expects to load should be included. Having extra unmanaged assemblies doesn't
 // cause anything to fail, though, so this function just enumerates all dll's in
 // order to keep this sample concise.
 std::string searchPath(directory);
 searchPath.append(FS_SEPARATOR);
 searchPath.append("*");
 searchPath.append(extension);

 WIN32_FIND_DATAA findData;
 HANDLE fileHandle = FindFirstFileA(searchPath.c_str(), &findData);

 if (fileHandle != INVALID_HANDLE_VALUE)
 {
 do
 {
 // Append the assembly to the list
 tpaList.append(directory);
 tpaList.append(FS_SEPARATOR);
 tpaList.append(findData.cFileName);
 tpaList.append(PATH_DELIMITER);

 // Note that the CLR does not guarantee which assembly will be loaded if an assembly
 // is in the TPA list multiple times (perhaps from different paths or perhaps with different
NI/NI.dll
 // extensions. Therefore, a real host should probably add items to the list in priority order and
only
 // add a file if it's not already present on the list.
 //
 // For this simple sample, though, and because we're only loading TPA assemblies from a single
path,
 // and have no native images, we can ignore that complication.
 }
 while (FindNextFileA(fileHandle, &findData));
 FindClose(fileHandle);
 }
}

// Define CoreCLR properties
// Other properties related to assembly loading are common here,
// but for this simple sample, TRUSTED_PLATFORM_ASSEMBLIES is all
// that is needed. Check hosting documentation for other common properties.
const char* propertyKeys[] = {
 "TRUSTED_PLATFORM_ASSEMBLIES" // Trusted assemblies
};

const char* propertyValues[] = {
 tpaList.c_str()
};

Step 4 - Start the runtime

PLATFORM_RESOURCE_ROOTS This list includes paths to probe in for resource satellite assemblies (in culture-specific
sub-directories).

In this sample host, the TPA list is constructed by simply listing all libraries in the current directory:

Because the sample is simple, it only needs the TRUSTED_PLATFORM_ASSEMBLIES property:

Unlike the mscoree.h hosting API (described below), CoreCLRHost.h APIs start the runtime and create the default

void* hostHandle;
unsigned int domainId;

// This function both starts the .NET Core runtime and creates
// the default (and only) AppDomain
int hr = initializeCoreClr(
 runtimePath, // App base path
 "SampleHost", // AppDomain friendly name
 sizeof(propertyKeys) / sizeof(char*), // Property count
 propertyKeys, // Property names
 propertyValues, // Property values
 &hostHandle, // Host handle
 &domainId); // AppDomain ID

Step 5 - Run managed code!

doWork_ptr managedDelegate;

// The assembly name passed in the third parameter is a managed assembly name
// as described at https://docs.microsoft.com/dotnet/framework/app-domains/assembly-names
hr = createManagedDelegate(
 hostHandle,
 domainId,
 "ManagedLibrary, Version=1.0.0.0",
 "ManagedLibrary.ManagedWorker",
 "DoWork",
 (void**)&managedDelegate);

int hr = executeAssembly(
 hostHandle,
 domainId,
 argumentCount,
 arguments,
 "HelloWorld.exe",
 (unsigned int*)&exitCode);

Step 6 - Shutdown and clean up

hr = shutdownCoreClr(hostHandle, domainId);

AppDomain all with a single call. The coreclr_initialize function takes a base path, name, and the properties
described earlier and returns back a handle to the host via the hostHandle parameter.

With the runtime started, the host can call managed code. This can be done in a couple of different ways. The
sample code linked to this tutorial uses the coreclr_create_delegate function to create a delegate to a static
managed method. This API takes the assembly name, namespace-qualified type name, and method name as inputs
and returns a delegate that can be used to invoke the method.

In this sample, the host can now call managedDelegate to run the ManagedWorker.DoWork method.

Alternatively, the coreclr_execute_assembly function can be used to launch a managed executable. This API takes
an assembly path and array of arguments as input parameters. It loads the assembly at that path and invokes its
main method.

Finally, when the host is done running managed code, the .NET Core runtime is shut down with coreclr_shutdown

or coreclr_shutdown_2 .

CoreCLR does not support reinitialization or unloading. Do not call coreclr_initialize again or unload the
CoreCLR library.

https://docs.microsoft.com/en-us/dotnet/standard/assembly/names

Create a host using Mscoree.h

A note about mscoree.h

Step 1 - Identify the managed entry point

// The managed application to run should be the first command-line parameter.
// Subsequent command line parameters will be passed to the managed app later in this host.
wchar_t targetApp[MAX_PATH];
GetFullPathNameW(argv[1], MAX_PATH, targetApp, NULL);

Step 2 - Find and load CoreCLR

HMODULE ret = LoadLibraryExW(coreDllPath, NULL, 0);

Step 3 - Get an ICLRRuntimeHost4 Instance

As mentioned previously, CoreClrHost.h is now the preferred method of hosting the .NET Core runtime. The
ICLRRuntimeHost4 interface can still be used, though, if the CoreClrHost.h interfaces aren't sufficient (if non-

standard startup flags are needed, for example, or if an AppDomainManager is needed on the default domain).
These instructions will guide you through hosting .NET Core using mscoree.h.

The CoreRun host shows a more complex, real-world example of hosting using mscoree.h.

The ICLRRuntimeHost4 .NET Core hosting interface is defined in MSCOREE.IDL. A header version of this file
(mscoree.h), which your host will need to reference, is produced via MIDL when the .NET Core runtime is built. If
you do not want to build the .NET Core runtime, mscoree.h is also available as a pre-built header in the
dotnet/coreclr repository. Instructions on building the .NET Core runtime can be found in its GitHub repository.

After referencing necessary headers (mscoree.h and stdio.h, for example), one of the first things a .NET Core host
must do is locate the managed entry point it will be using. In our sample host, this is done by just taking the first
command line argument to our host as the path to a managed binary whose main method will be executed.

The .NET Core runtime APIs are in CoreCLR.dll (on Windows). To get our hosting interface (ICLRRuntimeHost4), it's
necessary to find and load CoreCLR.dll. It is up to the host to define a convention for how it will locate CoreCLR.dll.
Some hosts expect the file to be present in a well-known machine-wide location (such as
%programfiles%\dotnet\shared\Microsoft.NETCore.App\2.1.6). Others expect that CoreCLR.dll will be loaded from
a location next to either the host itself or the app to be hosted. Still others might consult an environment variable to
find the library.

On Linux or Mac, the core runtime library is libcoreclr.so or libcoreclr.dylib, respectively.

Our sample host probes a few common locations for CoreCLR.dll. Once found, it must be loaded via LoadLibrary

(or dlopen on Linux/Mac).

The ICLRRuntimeHost4 hosting interface is retrieved by calling GetProcAddress (or dlsym on Linux/Mac) on
GetCLRRuntimeHost , and then invoking that function.

https://github.com/dotnet/coreclr/tree/master/src/coreclr/hosts/corerun
https://github.com/dotnet/coreclr/blob/master/src/inc/MSCOREE.IDL
https://github.com/dotnet/coreclr/
https://github.com/dotnet/coreclr/tree/master/src/pal/prebuilt/inc
https://github.com/dotnet/coreclr#building-the-repository
https://github.com/dotnet/coreclr/tree/master/src/pal/prebuilt/inc/mscoree.h

ICLRRuntimeHost4* runtimeHost;

FnGetCLRRuntimeHost pfnGetCLRRuntimeHost =
 (FnGetCLRRuntimeHost)::GetProcAddress(coreCLRModule, "GetCLRRuntimeHost");

if (!pfnGetCLRRuntimeHost)
{
 printf("ERROR - GetCLRRuntimeHost not found");
 return -1;
}

// Get the hosting interface
HRESULT hr = pfnGetCLRRuntimeHost(IID_ICLRRuntimeHost4, (IUnknown**)&runtimeHost);

Step 4 - Set startup flags and start the runtime

hr = runtimeHost->SetStartupFlags(
 // These startup flags control runtime-wide behaviors.
 // A complete list of STARTUP_FLAGS can be found in mscoree.h,
 // but some of the more common ones are listed below.
 static_cast<STARTUP_FLAGS>(
 // STARTUP_FLAGS::STARTUP_SERVER_GC | // Use server GC
 // STARTUP_FLAGS::STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | // Maximize domain-neutral loading
 // STARTUP_FLAGS::STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN_HOST | // Domain-neutral loading for
strongly-named assemblies
 STARTUP_FLAGS::STARTUP_CONCURRENT_GC | // Use concurrent GC
 STARTUP_FLAGS::STARTUP_SINGLE_APPDOMAIN | // All code executes in the default AppDomain
 // (required to use the runtimeHost-
>ExecuteAssembly helper function)
 STARTUP_FLAGS::STARTUP_LOADER_OPTIMIZATION_SINGLE_DOMAIN // Prevents domain-neutral loading
)
);

hr = runtimeHost->Start();

Step 5 - Preparing AppDomain settings

int appDomainFlags =
 // APPDOMAIN_FORCE_TRIVIAL_WAIT_OPERATIONS | // Do not pump messages during wait
 // APPDOMAIN_SECURITY_SANDBOXED | // Causes assemblies not from the TPA list to be loaded as partially
trusted
 APPDOMAIN_ENABLE_PLATFORM_SPECIFIC_APPS | // Enable platform-specific assemblies to run
 APPDOMAIN_ENABLE_PINVOKE_AND_CLASSIC_COMINTEROP | // Allow PInvoking from non-TPA assemblies
 APPDOMAIN_DISABLE_TRANSPARENCY_ENFORCEMENT; // Entirely disables transparency checks

With an ICLRRuntimeHost4 in-hand, we can now specify runtime-wide startup flags and start the runtime. Startup
flags determine which garbage collector (GC) to use (concurrent or server), whether we will use a single
AppDomain or multiple AppDomains, and what loader optimization policy to use (for domain-neutral loading of
assemblies).

The runtime is started with a call to the Start function.

Once the runtime is started, we will want to set up an AppDomain. There are a number of options that must be
specified when creating a .NET AppDomain, however, so it's necessary to prepare those first.

AppDomain flags specify AppDomain behaviors related to security and interop. Older Silverlight hosts used these
settings to sandbox user code, but most modern .NET Core hosts run user code as full trust and enable interop.

After deciding which AppDomain flags to use, AppDomain properties must be defined. The properties are
key/value pairs of strings. Many of the properties relate to how the AppDomain will load assemblies.

// TRUSTED_PLATFORM_ASSEMBLIES
// "Trusted Platform Assemblies" are prioritized by the loader and always loaded with full trust.
// A common pattern is to include any assemblies next to CoreCLR.dll as platform assemblies.
// More sophisticated hosts may also include their own Framework extensions (such as AppDomain managers)
// in this list.
size_t tpaSize = 100 * MAX_PATH; // Starting size for our TPA (Trusted Platform Assemblies) list
wchar_t* trustedPlatformAssemblies = new wchar_t[tpaSize];
trustedPlatformAssemblies[0] = L'\0';

// Extensions to probe for when finding TPA list files
const wchar_t *tpaExtensions[] = {
 L"*.dll",
 L"*.exe",
 L"*.winmd"
};

// Probe next to CoreCLR.dll for any files matching the extensions from tpaExtensions and
// add them to the TPA list. In a real host, this would likely be extracted into a separate function
// and perhaps also run on other directories of interest.
for (int i = 0; i < _countof(tpaExtensions); i++)
{
 // Construct the file name search pattern
 wchar_t searchPath[MAX_PATH];
 wcscpy_s(searchPath, MAX_PATH, coreRoot);
 wcscat_s(searchPath, MAX_PATH, L"\\");
 wcscat_s(searchPath, MAX_PATH, tpaExtensions[i]);

 // Find files matching the search pattern
 WIN32_FIND_DATAW findData;
 HANDLE fileHandle = FindFirstFileW(searchPath, &findData);

 if (fileHandle != INVALID_HANDLE_VALUE)
 {
 do
 {
 // Construct the full path of the trusted assembly
 wchar_t pathToAdd[MAX_PATH];
 wcscpy_s(pathToAdd, MAX_PATH, coreRoot);
 wcscat_s(pathToAdd, MAX_PATH, L"\\");
 wcscat_s(pathToAdd, MAX_PATH, findData.cFileName);

 // Check to see if TPA list needs expanded
 if (wcsnlen(pathToAdd, MAX_PATH) + (3) + wcsnlen(trustedPlatformAssemblies, tpaSize) >= tpaSize)

Common AppDomain properties include:

TRUSTED_PLATFORM_ASSEMBLIES This is a list of assembly paths (delimited by ; on Windows and : on
Linux/Mac) which the AppDomain should prioritize loading and give full trust to (even in partially-trusted
domains). This list is meant to contain 'Framework' assemblies and other trusted modules, similar to the GAC in
.NET Framework scenarios. Some hosts will put any library next to coreclr.dll on this list, others have hard-
coded manifests listing trusted assemblies for their purposes.
APP_PATHS This is a list of paths to probe in for an assembly if it can't be found in the trusted platform

assemblies (TPA) list. Because the host has more control over which assemblies are loaded using the TPA list, it
is a best practice for hosts to determine which assemblies they expect to load and list them explicitly. If probing
at runtime is needed, however, this property can enable that scenario.
APP_NI_PATHS This list is very similar to APP_PATHS except that it's meant to be paths that will be probed for

native images.
NATIVE_DLL_SEARCH_DIRECTORIES This property is a list of paths the loader should probe when looking for native

DLLs called via p/invoke.
PLATFORM_RESOURCE_ROOTS This list includes paths to probe in for resource satellite assemblies (in culture-specific

sub-directories).

In our simple sample host, these properties are set up as follows:

https://github.com/dotnet/samples/tree/master/core/hosting/HostWithMscoree

 if (wcsnlen(pathToAdd, MAX_PATH) + (3) + wcsnlen(trustedPlatformAssemblies, tpaSize) >= tpaSize)
 {
 // Expand, if needed
 tpaSize *= 2;
 wchar_t* newTPAList = new wchar_t[tpaSize];
 wcscpy_s(newTPAList, tpaSize, trustedPlatformAssemblies);
 trustedPlatformAssemblies = newTPAList;
 }

 // Add the assembly to the list and delimited with a semi-colon
 wcscat_s(trustedPlatformAssemblies, tpaSize, pathToAdd);
 wcscat_s(trustedPlatformAssemblies, tpaSize, L";");

 // Note that the CLR does not guarantee which assembly will be loaded if an assembly
 // is in the TPA list multiple times (perhaps from different paths or perhaps with different
NI/NI.dll
 // extensions. Therefore, a real host should probably add items to the list in priority order and
only
 // add a file if it's not already present on the list.
 //
 // For this simple sample, though, and because we're only loading TPA assemblies from a single
path,
 // we can ignore that complication.
 }
 while (FindNextFileW(fileHandle, &findData));
 FindClose(fileHandle);
 }
}

// APP_PATHS
// App paths are directories to probe in for assemblies which are not one of the well-known Framework
assemblies
// included in the TPA list.
//
// For this simple sample, we just include the directory the target application is in.
// More complex hosts may want to also check the current working directory or other
// locations known to contain application assets.
wchar_t appPaths[MAX_PATH * 50];

// Just use the targetApp provided by the user and remove the file name
wcscpy_s(appPaths, targetAppPath);

// APP_NI_PATHS
// App (NI) paths are the paths that will be probed for native images not found on the TPA list.
// It will typically be similar to the app paths.
// For this sample, we probe next to the app and in a hypothetical directory of the same name with 'NI'
suffixed to the end.
wchar_t appNiPaths[MAX_PATH * 50];
wcscpy_s(appNiPaths, targetAppPath);
wcscat_s(appNiPaths, MAX_PATH * 50, L";");
wcscat_s(appNiPaths, MAX_PATH * 50, targetAppPath);
wcscat_s(appNiPaths, MAX_PATH * 50, L"NI");

// NATIVE_DLL_SEARCH_DIRECTORIES
// Native dll search directories are paths that the runtime will probe for native DLLs called via PInvoke
wchar_t nativeDllSearchDirectories[MAX_PATH * 50];
wcscpy_s(nativeDllSearchDirectories, appPaths);
wcscat_s(nativeDllSearchDirectories, MAX_PATH * 50, L";");
wcscat_s(nativeDllSearchDirectories, MAX_PATH * 50, coreRoot);

// PLATFORM_RESOURCE_ROOTS
// Platform resource roots are paths to probe in for resource assemblies (in culture-specific sub-directories)
wchar_t platformResourceRoots[MAX_PATH * 50];
wcscpy_s(platformResourceRoots, appPaths);

Step 6 - Create the AppDomain

DWORD domainId;

// Setup key/value pairs for AppDomain properties
const wchar_t* propertyKeys[] = {
 L"TRUSTED_PLATFORM_ASSEMBLIES",
 L"APP_PATHS",
 L"APP_NI_PATHS",
 L"NATIVE_DLL_SEARCH_DIRECTORIES",
 L"PLATFORM_RESOURCE_ROOTS"
};

// Property values which were constructed in step 5
const wchar_t* propertyValues[] = {
 trustedPlatformAssemblies,
 appPaths,
 appNiPaths,
 nativeDllSearchDirectories,
 platformResourceRoots
};

// Create the AppDomain
hr = runtimeHost->CreateAppDomainWithManager(
 L"Sample Host AppDomain", // Friendly AD name
 appDomainFlags,
 NULL, // Optional AppDomain manager assembly name
 NULL, // Optional AppDomain manager type (including namespace)
 sizeof(propertyKeys) / sizeof(wchar_t*),
 propertyKeys,
 propertyValues,
 &domainId);

Step 7 - Run managed code!

DWORD exitCode = -1;
hr = runtimeHost->ExecuteAssembly(domainId, targetApp, argc - 1, (LPCWSTR*)(argc > 1 ? &argv[1] : NULL),
&exitCode);

Once all AppDomain flags and properties are prepared, ICLRRuntimeHost4::CreateAppDomainWithManager can be used
to set up the AppDomain. This function optionally takes a fully qualified assembly name and type name to use as
the domain's AppDomain manager. An AppDomain manager can allow a host to control some aspects of
AppDomain behavior and may provide entry points for launching managed code if the host doesn't intend to
invoke user code directly.

With an AppDomain up and running, the host can now start executing managed code. The easiest way to do this is
to use ICLRRuntimeHost4::ExecuteAssembly to invoke a managed assembly's entry point method. Note that this
function only works in single-domain scenarios.

Another option, if ExecuteAssembly doesn't meet your host's needs, is to use CreateDelegate to create a function
pointer to a static managed method. This requires the host to know the signature of the method it is calling into (in
order to create the function pointer type) but allows hosts the flexibility to invoke code other than an assembly's
entry point. The assembly name provided in the second parameter is the full managed assembly name of the
library to load.

https://docs.microsoft.com/en-us/dotnet/standard/assembly/names

void *pfnDelegate = NULL;
hr = runtimeHost->CreateDelegate(
 domainId,
 L"HW, Version=1.0.0.0, Culture=neutral", // Target managed assembly
 L"ConsoleApplication.Program", // Target managed type
 L"Main", // Target entry point (static method)
 (INT_PTR*)&pfnDelegate);

((MainMethodFp*)pfnDelegate)(NULL);

Step 8 - Clean up

runtimeHost->UnloadAppDomain(domainId, true /* Wait until unload complete */);
runtimeHost->Stop();
runtimeHost->Release();

Conclusion

Finally, the host should clean up after itself by unloading AppDomains, stopping the runtime, and releasing the
ICLRRuntimeHost4 reference.

CoreCLR does not support unloading. Do not unload the CoreCLR library.

Once your host is built, it can be tested by running it from the command line and passing any arguments the host
expects (like the managed app to run for the mscoree example host). When specifying the .NET Core app for the
host to run, be sure to use the .dll that is produced by dotnet build . Executables (.exe files) produced by
dotnet publish for self-contained applications are actually the default .NET Core host (so that the app can be

launched directly from the command line in mainline scenarios); user code is compiled into a dll of the same name.

If things don't work initially, double-check that coreclr.dll is available in the location expected by the host, that all
necessary Framework libraries are in the TPA list, and that CoreCLR's bitness (32- or 64-bit) matches how the host
was built.

Hosting the .NET Core runtime is an advanced scenario that many developers won't require, but for those who
need to launch managed code from a native process, or who need more control over the .NET Core runtime's
behavior, it can be very useful.

Exposing .NET Core components to COM
11/12/2019 • 2 minutes to read • Edit Online

Prerequisites

Create the library

In .NET Core, the process for exposing your .NET objects to COM has been significantly streamlined in comparison
to .NET Framework. The following process will walk you through how to expose a class to COM. This tutorial
shows you how to:

Expose a class to COM from .NET Core.
Generate a COM server as part of building your .NET Core library.
Automatically generate a side-by-side server manifest for Registry-Free COM.

Install .NET Core 3.0 SDK or a newer version.

The first step is to create the library.

dotnet new classlib

using System;
using System.Runtime.InteropServices;

[ComVisible(true)]
[Guid(ContractGuids.ServerInterface)]
[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface IServer
{
 /// <summary>
 /// Compute the value of the constant Pi.
 /// </summary>
 double ComputePi();
}

1. Create a new folder, and in that folder run the following command:

2. Open Class1.cs .

3. Add using System.Runtime.InteropServices; to the top of the file.

4. Create an interface named IServer . For example:

5. Add the [Guid("<IID>")] attribute to the interface, with the interface GUID for the COM interface you're
implementing. For example, [Guid("fe103d6e-e71b-414c-80bf-982f18f6c1c7")] . Note that this GUID needs to
be unique since it is the only identifier of this interface for COM. In Visual Studio, you can generate a GUID
by going to Tools > Create GUID to open the Create GUID tool.

6. Add the [InterfaceType] attribute to the interface and specify what base COM interfaces your interface
should implement.

7. Create a class named Server that implements IServer .

https://github.com/dotnet/docs/blob/master/docs/core/native-interop/expose-components-to-com.md
https://dotnet.microsoft.com/download

IMPORTANT

Generate the COM host

Register the COM host for COM

Enabling RegFree COM

Sample

Additional notes

8. Add the [Guid("<CLSID>")] attribute to the class, with the class identifier GUID for the COM class you're
implementing. For example, [Guid("9f35b6f5-2c05-4e7f-93aa-ee087f6e7ab6")] . As with the interface GUID,
this GUID must be unique since it is the only identifier of this interface to COM.

9. Add the [ComVisible(true)] attribute to both the interface and the class.

Unlike in .NET Framework, .NET Core requires you to specify the CLSID of any class you want to be activatable via COM.

1. Open the .csproj project file and add <EnableComHosting>true</EnableComHosting> inside a
<PropertyGroup></PropertyGroup> tag.

2. Build the project.

The resulting output will have a ProjectName.dll , ProjectName.deps.json , ProjectName.runtimeconfig.json and
ProjectName.comhost.dll file.

Open an elevated command prompt and run regsvr32 ProjectName.comhost.dll . That will register all of your
exposed .NET objects with COM.

1. Open the .csproj project file and add <EnableRegFreeCom>true</EnableRegFreeCom> inside a
<PropertyGroup></PropertyGroup> tag.

2. Build the project.

The resulting output will now also have a ProjectName.X.manifest file. This file is the side-by-side manifest for use
with Registry-Free COM.

There is a fully functional COM server sample in the dotnet/samples repository on GitHub.

Unlike in .NET Framework, there is no support in .NET Core for generating a COM Type Library (TLB) from a .NET
Core assembly. The guidance is to either manually write an IDL file or a C/C++ header for the native declarations
of the COM interfaces.

Additionally, loading both .NET Framework and .NET Core into the same process does have diagnostic limitations.
The primary limitation is the debugging of managed components as it is not possible to debug both .NET
Framework and .NET Core at the same time. In addition, the two runtime instances don't share managed
assemblies. This means that it isn't possible to share actual .NET types across the two runtimes and instead all
interactions must be restricted to the exposed COM interface contracts.

https://github.com/dotnet/samples/tree/master/core/extensions/COMServerDemo

Packages, metapackages and frameworks
10/11/2019 • 7 minutes to read • Edit Online

Packages

.NET Core is a platform made of NuGet packages. Some product experiences benefit from fine-grained definition
of packages while others from coarse-grained. To accommodate this duality, the product is distributed as a fine-
grained set of packages and in coarser chunks with a package type informally called a metapackage.

Each of the .NET Core packages support being run on multiple .NET implementations, represented as frameworks.
Some of those frameworks are traditional frameworks, like net46 , representing the .NET Framework. Another set
is new frameworks that can be thought of as "package-based frameworks", which establish a new model for
defining frameworks. These package-based frameworks are entirely formed and defined as packages, forming a
strong relationship between packages and frameworks.

.NET Core is split into a set of packages, which provide primitives, higher-level data types, app composition types
and common utilities. Each of these packages represent a single assembly of the same name. For example,
System.Runtime contains System.Runtime.dll.

There are advantages to defining packages in a fine-grained manner:

Fine-grained packages can ship on their own schedule with relatively limited testing of other packages.
Fine-grained packages can provide differing OS and CPU support.
Fine-grained packages can have dependencies specific to only one library.
Apps are smaller because unreferenced packages don't become part of the app distribution.

Some of these benefits are only used in certain circumstances. For example, NET Core packages will typically ship
on the same schedule with the same platform support. In the case of servicing, fixes can be distributed and
installed as small single package updates. Due to the narrow scope of change, the validation and time to make a fix
available is limited to what is needed for a single library.

The following is a list of the key NuGet packages for .NET Core:

System.Runtime - The most fundamental .NET Core package, including Object, String, Array, Action, and
IList<T>.
System.Collections - A set of (primarily) generic collections, including List<T> and Dictionary<TKey,TValue>.
System.Net.Http - A set of types for HTTP network communication, including HttpClient and
HttpResponseMessage.
System.IO.FileSystem - A set of types for reading and writing to local or networked disk-based storage,
including File and Directory.
System.Linq - A set of types for querying objects, including Enumerable and ILookup<TKey,TElement>.
System.Reflection - A set of types for loading, inspecting, and activating types, including Assembly, TypeInfo
and MethodInfo.

Typically, rather than including each package, it's easier and more robust to include a metapackage. However,
when you need a single package, you can include it as in the following example, which references the
System.Runtime package.

https://github.com/dotnet/docs/blob/master/docs/core/packages.md
https://www.nuget.org/packages/System.Runtime
https://www.nuget.org/packages/System.Runtime
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.action
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://www.nuget.org/packages/System.Collections
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://www.nuget.org/packages/System.Net.Http
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpresponsemessage
https://www.nuget.org/packages/System.IO.FileSystem
https://docs.microsoft.com/dotnet/api/system.io.file
https://docs.microsoft.com/dotnet/api/system.io.directory
https://www.nuget.org/packages/System.Linq
https://docs.microsoft.com/dotnet/api/system.linq.ilookup-2
https://www.nuget.org/packages/System.Reflection
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.reflection.typeinfo
https://docs.microsoft.com/dotnet/api/system.reflection.methodinfo
https://www.nuget.org/packages/System.Runtime/

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.6</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="System.Runtime" Version="4.3.0" />
 </ItemGroup>
</Project>

Metapackages

Frameworks

Metapackages are a NuGet package convention for describing a set of packages that are meaningful together.
They represent this set of packages by making them dependencies. They can optionally establish a framework for
this set of packages by specifying a framework.

Previous versions of the .NET Core tools (both project.json and csproj-based tools) by default specified both a
framework and a metapackage. Currently, however, the metapackage is implicitly referenced by the target
framework, so that each metapackage is tied to a target framework. For example, the netstandard1.6 framework
references the NetStandard.Library version 1.6.0 metapackage. Similarly, the netcoreapp2.1 framework references
the Microsoft.NETCore.App Version 2.1.0 metapackage. For more information, see Implicit metapackage package
reference in the .NET Core SDK.

Targeting a framework and implicitly referencing a metapackage means that you in effect are adding a reference to
each of its dependent packages as a single gesture. That makes all of the libraries in those packages available for
IntelliSense (or similar experience) and for publishing your app.

There are advantages to using metapackages:

Provides a convenient user experience to reference a large set of fine-grained packages.
Defines a set of packages (including specific versions) that are tested and work well together.

The .NET Standard metapackage is:

NETStandard.Library - Describes the libraries that are part of the ".NET Standard". Applies to all .NET
implementations (for example, .NET Framework, .NET Core and Mono) that support .NET Standard. Establishes
the 'netstandard' framework.

The key .NET Core metapackages are:

Microsoft.NETCore.App - Describes the libraries that are part of the .NET Core distribution. Establishes the
.NETCoreApp framework. Depends on the smaller NETStandard.Library .

Microsoft.AspNetCore.App - Includes all the supported packages from ASP.NET Core and Entity Framework
Core except those that contain third-party dependencies. See Microsoft.AspNetCore.App metapackage for
ASP.NET Core for more information.
Microsoft.AspNetCore.All - Includes all the supported packages from ASP.NET Core, Entity Framework Core,
and internal and third-party dependencies used by ASP.NET Core and Entity Framework Core. See
Microsoft.AspNetCore.All metapackage for ASP.NET Core 2.x for more information.
Microsoft.NETCore.Portable.Compatibility - A set of compatibility facades that enable mscorlib-based Portable
Class Libraries (PCLs) to run on .NET Core.

.NET Core packages each support a set of runtime frameworks. Frameworks describe an available API set (and
potentially other characteristics) that you can rely on when you target a given framework. They are versioned as
new APIs are added.

https://github.com/dotnet/core/blob/master/release-notes/1.0/sdk/1.0-rc3-implicit-package-refs.md
https://www.nuget.org/packages/NETStandard.Library
https://www.nuget.org/packages/Microsoft.NETCore.App
https://github.com/dotnet/core-setup/blob/release/1.1.0/pkg/projects/Microsoft.NETCore.App/Microsoft.NETCore.App.pkgproj
https://www.nuget.org/packages/Microsoft.AspNetCore.App
https://docs.microsoft.com/aspnet/core/fundamentals/metapackage-app
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://docs.microsoft.com/aspnet/core/fundamentals/metapackage
https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility

Package-based frameworks

For example, System.IO.FileSystem supports the following frameworks:

.NETFramework,Version=4.6

.NETStandard,Version=1.3
6 Xamarin platforms (for example, xamarinios10)

It is useful to contrast the first two of these frameworks, since they are examples of the two different ways that
frameworks are defined.

The .NETFramework,Version=4.6 framework represents the available APIs in the .NET Framework 4.6. You can
produce libraries compiled with the .NET Framework 4.6 reference assemblies and then distribute those libraries
in NuGet packages in a net46 lib folder. It will be used for apps that target the .NET Framework 4.6 or that are
compatible with it. This is how all frameworks have traditionally worked.

The .NETStandard,Version=1.3 framework is a package-based framework. It relies on packages that target the
framework to define and expose APIs in terms of the framework.

There is a two-way relationship between frameworks and packages. The first part is defining the APIs available for
a given framework, for example netstandard1.3 . Packages that target netstandard1.3 (or compatible frameworks,
like netstandard1.0) define the APIs available for netstandard1.3 . That may sound like a circular definition, but it
isn't. By virtue of being "package-based", the API definition for the framework comes from packages. The
framework itself doesn't define any APIs.

The second part of the relationship is asset selection. Packages can contain assets for multiple frameworks. Given a
reference to a set of packages and/or metapackages, the framework is needed to determine which asset should be
selected, for example net46 or netstandard1.3 . It is important to select the correct asset. For example, a net46

asset is not likely to be compatible with .NET Framework 4.0 or .NET Core 1.0.

You can see this relationship in the following image. The API targets and defines the framework. The framework is
used for asset selection. The asset gives you the API.

https://www.nuget.org/packages/System.IO.FileSystem

.NET Standard

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.6</TargetFramework>
 </PropertyGroup>
</Project>

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.3</TargetFramework>
 <NetStandardImplicitPackageVersion>1.6.0</NetStandardImplicitPackageVersion>
 </PropertyGroup>
</Project>

.NET Core application

The two primary package-based frameworks used with .NET Core are:

netstandard

netcoreapp

The .NET Standard (Target Framework Moniker: netstandard) framework represents the APIs defined by and built
on top of the .NET Standard. Libraries that are intended to run on multiple runtimes should target this framework.
They will be supported on any .NET Standard compliant runtime, such as .NET Core, .NET Framework and
Mono/Xamarin. Each of these runtimes supports a set of .NET Standard versions, depending on which APIs they
implement.

The netstandard framework implicitly references the NETStandard.Library metapackage. For example, the
following MSBuild project file indicates that the project targets netstandard1.6 , which references the
NETStandard.Library version 1.6 metapackage.

However, the framework and metapackage references in the project file do not need to match, and you can use the
<NetStandardImplicitPackageVersion> element in your project file to specify a framework version that is lower than

the metapackage version. For example, the following project file is valid.

It may seem strange to target netstandard1.3 but use the 1.6.0 version of NETStandard.Library . It is a valid use-
case, since the metapackage maintains support for older netstandard versions. It could be the case you've
standardized on the 1.6.0 version of the metapackage and use it for all your libraries, which target a variety of
netstandard versions. With this approach, you only need to restore NETStandard.Library 1.6.0 and not earlier

versions.

The reverse would not be valid: targeting netstandard1.6 with the 1.3.0 version of NETStandard.Library . You
cannot target a higher framework with a lower metapackage, since the lower version metapackage will not expose
any assets for that higher framework. The versioning scheme for metapackages asserts that metapackages match
the highest version of the framework they describe. By virtue of the versioning scheme, the first version of
NETStandard.Library is v1.6.0 given that it contains netstandard1.6 assets. v1.3.0 is used in the example above, for

symmetry with the example above, but does not actually exist.

The .NET Core (Target Framework Moniker: netcoreapp) framework represents the packages and associated APIs
that come with the .NET Core distribution and the console application model that it provides. .NET Core apps must
use this framework, due to targeting the console application model, as should libraries that intended to run only on
.NET Core. Using this framework restricts apps and libraries to running only on .NET Core.

The Microsoft.NETCore.App metapackage targets the netcoreapp framework. It provides access to ~60 libraries,
~40 provided by the NETStandard.Library package and ~20 more in addition. You can reference additional
libraries that target netcoreapp or compatible frameworks, such as netstandard , to get access to additional APIs.

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://www.nuget.org/packages/NETStandard.Library
https://www.nuget.org/packages/NETStandard.Library/1.6.0
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Most of the additional libraries provided by Microsoft.NETCore.App also target netstandard given that their
dependencies are satisfied by other netstandard libraries. That means that netstandard libraries can also
reference those packages as dependencies.

High-level overview of changes in the .NET Core
tools
10/17/2019 • 4 minutes to read • Edit Online

Moving away from project.json

NOTE

The tooling layers

This document describes the changes associated with moving from project.json to MSBuild and the csproj project
system with information on the changes to the layering of the .NET Core tooling and the implementation of the
CLI commands. These changes occurred with the release of .NET Core SDK 1.0 and Visual Studio 2017 on March
7, 2017 (see the announcement) but were initially implemented with the release of the .NET Core SDK Preview 3.

The biggest change in the tooling for .NET Core is certainly the move away from project.json to csproj as the
project system. The latest versions of the command-line tools don't support project.json files. That means that it
cannot be used to build, run or publish project.json based applications and libraries. In order to use this version of
the tools, you will need to migrate your existing projects or start new ones.

As part of this move, the custom build engine that was developed to build project.json projects was replaced with a
mature and fully capable build engine called MSBuild. MSBuild is a well-known engine in the .NET community,
since it has been a key technology since the platform's first release. Of course, because it needs to build .NET Core
applications, MSBuild has been ported to .NET Core and can be used on any platform that .NET Core runs on. One
of the main promises of .NET Core is that of a cross-platform development stack, and we have made sure that this
move does not break that promise.

If you are new to MSBuild and would like to learn more about it, you can start by reading the MSBuild Concepts article.

With the move away from the existing project system as well as with building engine switches, the question that
naturally follows is do any of these changes change the overall "layering" of the whole .NET Core tooling
ecosystem? Are there new bits and components?

Let's start with a quick refresher on Preview 2 layering as shown in the following picture:

The layering of the tools is quite simple. At the bottom we have the .NET Core Command Line tools as a
foundation. All other, higher-level tools such as Visual Studio or Visual Studio Code, depend and rely on the CLI to

https://github.com/dotnet/docs/blob/master/docs/core/tools/cli-msbuild-architecture.md
https://devblogs.microsoft.com/dotnet/announcing-net-core-tools-1-0/
https://devblogs.microsoft.com/dotnet/changes-to-project-json/
https://github.com/Microsoft/msbuild
https://docs.microsoft.com/visualstudio/msbuild/msbuild-concepts

NOTE

CLI commands

build projects, restore dependencies and so on. This meant that, for example, if Visual Studio wanted to perform a
restore operation, it would call into dotnet restore (see note) command in the CLI.

With the move to the new project system, the previous diagram changes:

The main difference is that the CLI is not the foundational layer anymore; this role is now filled by the "shared SDK
component". This shared SDK component is a set of targets and associated tasks that are responsible for compiling
your code, publishing it, packing NuGet packages etc. The SDK itself is open-source and is available on GitHub on
the SDK repo.

A "target" is a MSBuild term that indicates a named operation that MSBuild can invoke. It is usually coupled with one or
more tasks that execute some logic that the target is supposed to do. MSBuild supports many ready-made targets such as
Copy or Execute ; it also allows users to write their own tasks using managed code and define targets to execute those

tasks. For more information, see MSBuild tasks.

All the toolsets now consume the shared SDK component and its targets, CLI included. For example, the next
version of Visual Studio will not call into dotnet restore (see note) command to restore dependencies for .NET
Core projects, it will use the "Restore" target directly. Since these are MSBuild targets, you can also use raw
MSBuild to execute them using the dotnet msbuild command.

The shared SDK component means that the majority of existing CLI commands have been re-implemented as
MSBuild tasks and targets. What does this mean for the CLI commands and your usage of the toolset?

From an usage perspective, it doesn't change the way you use the CLI. The CLI still has the core commands that
exist in Preview 2 release:

new

restore

run

build

publish

test

pack

These commands still do what you expect them to do (new up a project, build it, publish it, pack it and so on).
Majority of the options are not changed, and are still there, and you can consult either the commands' help screens
(using dotnet <command> --help) or documentation on this site to get familiar with any changes.

From an execution perspective, the CLI commands will take their parameters and construct a call to "raw" MSBuild
that will set the needed properties and run the desired target. To better illustrate this, consider the following

https://github.com/dotnet/sdk
https://docs.microsoft.com/visualstudio/msbuild/msbuild-tasks

dotnet publish -o pub -c Release

dotnet msbuild -t:Publish -p:OutputPath=pub -p:Configuration=Release

NOTE

command:

This command is publishing an application into a pub folder using the "Release" configuration. Internally, this
command gets translated into the following MSBuild invocation:

The notable exception to this rule are new and run commands, as they have not been implemented as MSBuild
targets.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

Managing dependencies with .NET Core SDK 1.0
4/16/2019 • 2 minutes to read • Edit Online

The new <PackageReference> element

<PackageReference Include="PACKAGE_ID" Version="PACKAGE_VERSION" />

NOTE

<PackageReference Include="PACKAGE_ID" Version="PACKAGE_VERSION" Condition="'$(TargetFramework)' ==
'netcoreapp2.1'" />

Adding a dependency to your project

With the move of .NET Core projects from project.json to csproj and MSBuild, a significant investment also
happened that resulted in unification of the project file and assets that allow tracking of dependencies. For .NET
Core projects this is similar to what project.json did. There is no separate JSON or XML file that tracks NuGet
dependencies. With this change, we've also introduced another type of reference into the csproj syntax called the
<PackageReference> .

This document describes the new reference type. It also shows how to add a package dependency using this new
reference type to your project.

The <PackageReference> has the following basic structure:

If you are familiar with MSBuild, it will look familiar to the other reference types that already exist. The key is the
Include statement which specifies the package id that you wish to add to the project. The <Version> child element

specifies the version to get. The versions are specified as per NuGet version rules.

If you are not familiar with the overall csproj syntax, see the MSBuild project reference documentation for more
information.

Adding a dependency that is available only in a specific target is done using conditions like in the following
example:

The above means that the dependency will only be valid if the build is happening for that given target. The
$(TargetFramework) in the condition is a MSBuild property that is being set in the project. For most common .NET

Core applications, you will not need to do this.

Adding a dependency to your project is straightforward. Here is an example of how to add Json.NET version
9.0.1 to your project. Of course, it is applicable to any other NuGet dependency.

When you open your project file, you will see two or more <ItemGroup> nodes. You will notice that one of the
nodes already has <PackageReference> elements in it. You can add your new dependency to this node, or create a
new one; it is completely up to you as the result will be the same.

In this example we will use the default template that is dropped by dotnet new console . This is a simple console
application. When we open up the project, we first find the <ItemGroup> with already existing <PackageReference>

in it. We then add the following to it:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dependencies.md
https://docs.microsoft.com/nuget/create-packages/dependency-versions#version-ranges
https://docs.microsoft.com/visualstudio/msbuild/msbuild-project-file-schema-reference

<PackageReference Include="Newtonsoft.Json" Version="9.0.1" />

NOTE

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
 </ItemGroup>
</Project>

Removing a dependency from the project

After this, we save the project and run the dotnet restore command to install the dependency.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

The full project looks like this:

Removing a dependency from the project file involves simply removing the <PackageReference> from the project
file.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

Additions to the csproj format for .NET Core
11/7/2019 • 15 minutes to read • Edit Online

Implicit package references

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

<PropertyGroup>
 <TargetFrameworks>netcoreapp2.1;net462</TargetFrameworks>
</PropertyGroup>

Recommendations

Implicit version for some package references

Recommendation

This document outlines the changes that were added to the project files as part of the move from project.json to csproj
and MSBuild. For more information about general project file syntax and reference, see the MSBuild project file
documentation.

Metapackages are implicitly referenced based on the target framework(s) specified in the <TargetFramework> or
<TargetFrameworks> property of your project file. <TargetFrameworks> is ignored if <TargetFramework> is specified,

independent of order. For more information, see Packages, metapackages and frameworks.

Since Microsoft.NETCore.App or NETStandard.Library metapackages are implicitly referenced, the following are our
recommended best practices:

When targeting .NET Core or .NET Standard, never have an explicit reference to the Microsoft.NETCore.App or
NETStandard.Library metapackages via a <PackageReference> item in your project file.

If you need a specific version of the runtime when targeting .NET Core, you should use the
<RuntimeFrameworkVersion> property in your project (for example, 1.0.4) instead of referencing the metapackage.

If you need a specific version of the NETStandard.Library metapackage when targeting .NET Standard, you can use
the <NetStandardImplicitPackageVersion> property and set the version you need.
Don't explicitly add or update references to either the Microsoft.NETCore.App or NETStandard.Library metapackage
in .NET Framework projects. If any version of NETStandard.Library is needed when using a .NET Standard-based
NuGet package, NuGet automatically installs that version.

This might happen if you are using self-contained deployments and you need a specific patch version of
1.0.0 LTS runtime, for example.

Most usages of <PackageReference> require setting the Version attribute to specify the NuGet package version to be
used. When using .NET Core 2.1 or 2.2 and referencing Microsoft.AspNetCore.App or Microsoft.AspNetCore.All,
however, the attribute is unnecessary. The .NET Core SDK can automatically select the version of these packages that
should be used.

When referencing the Microsoft.AspNetCore.App or Microsoft.AspNetCore.All packages, do not specify their version. If
a version is specified, the SDK may produce warning NETSDK1071. To fix this warning, remove the package version
like in the following example:

https://github.com/dotnet/docs/blob/master/docs/core/tools/csproj.md
https://github.com/Microsoft/MSBuild
https://docs.microsoft.com/visualstudio/msbuild/msbuild-project-file-schema-reference
https://docs.microsoft.com/aspnet/core/fundamentals/metapackage-app
https://docs.microsoft.com/aspnet/core/fundamentals/metapackage

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" />
</ItemGroup>

Default compilation includes in .NET Core projects

ELEMENT INCLUDE GLOB EXCLUDE GLOB REMOVE GLOB

Compile **/*.cs (or other language
extensions)

**/*.user; **/*.*proj; **/*.sln;
**/*.vssscc

N/A

EmbeddedResource **/*.resx **/*.user; **/*.*proj; **/*.sln;
**/*.vssscc

N/A

None **/* **/*.user; **/*.*proj; **/*.sln;
**/*.vssscc

**/*.cs; **/*.resx

NOTE

Known issue: the .NET Core 2.1 SDK only supported this syntax when the project also uses
Microsoft.NET.Sdk.Web. This is resolved in the .NET Core 2.2 SDK.

These references to ASP.NET Core metapackages have a slightly different behavior from most normal NuGet
packages. Framework-dependent deployments of applications that use these metapackages automatically take
advantage of the ASP.NET Core shared framework. When you use the metapackages, no assets from the referenced
ASP.NET Core NuGet packages are deployed with the application—the ASP.NET Core shared framework contains
these assets. The assets in the shared framework are optimized for the target platform to improve application startup
time. For more information about shared framework, see .NET Core distribution packaging.

If a version is specified, it's treated as the minimum version of ASP.NET Core shared framework for framework-
dependent deployments and as an exact version for self-contained deployments. This can have the following
consequences:

If the version of ASP.NET Core installed on the server is less than the version specified on the PackageReference,
the .NET Core process fails to launch. Updates to the metapackage are often available on NuGet.org before updates
have been made available in hosting environments such as Azure. Updating the version on the PackageReference
to ASP.NET Core could cause a deployed application to fail.
If the application is deployed as a self-contained deployment, the application may not contain the latest security
updates to .NET Core. When a version isn't specified, the SDK can automatically include the newest version of
ASP.NET Core in the self-contained deployment.

With the move to the csproj format in the latest SDK versions, we've moved the default includes and excludes for
compile items and embedded resources to the SDK properties files. This means that you no longer need to specify
these items in your project file.

The main reason for doing this is to reduce the clutter in your project file. The defaults that are present in the SDK
should cover most common use cases, so there is no need to repeat them in every project that you create. This leads to
smaller project files that are much easier to understand as well as edit by hand, if needed.

The following table shows which element and which globs are both included and excluded in the SDK:

Exclude glob always excludes the ./bin and ./obj folders, which are represented by the $(BaseOutputPath) and
$(BaseIntermediateOutputPath) MSBuild properties, respectively. As a whole, all excludes are represented by
$(DefaultItemExcludes) .

https://en.wikipedia.org/wiki/Glob_(programming)

<PropertyGroup>
 <EnableDefaultCompileItems>false</EnableDefaultCompileItems>
</PropertyGroup>

<PropertyGroup>
 <EnableDefaultNoneItems>false</EnableDefaultNoneItems>
</PropertyGroup>

<PropertyGroup>
 <EnableDefaultItems>false</EnableDefaultItems>
</PropertyGroup>

How to see the whole project as MSBuild sees it

Additions
Sdk attribute

If you have globs in your project and you try to build it using the newest SDK, you'll get the following error:

Duplicate Compile items were included. The .NET SDK includes Compile items from your project directory by
default. You can either remove these items from your project file, or set the 'EnableDefaultCompileItems' property
to 'false' if you want to explicitly include them in your project file.

In order to get around this error, you can either remove the explicit Compile items that match the ones listed on the
previous table, or you can set the <EnableDefaultCompileItems> property to false , like this:

Setting this property to false will disable implicit inclusion, reverting to the behavior of previous SDKs where you
had to specify the default globs in your project.

This change does not modify the main mechanics of other includes. However, if you wish to specify, for example, some
files to get published with your app, you can still use the known mechanisms in csproj for that (for example, the
<Content> element).

<EnableDefaultCompileItems> only disables Compile globs but doesn't affect other globs, like the implicit None glob,
which also applies to *.cs items. Because of that, Solution Explorer will continue show *.cs items as part of the
project, included as None items. In a similar way, you can set <EnableDefaultNoneItems> to false to disable the implicit
None glob, like this:

To disable all implicit globs, you can set the <EnableDefaultItems> property to false as in the following example:

While those csproj changes greatly simplify project files, you might want to see the fully expanded project as MSBuild
sees it once the SDK and its targets are included. Preprocess the project with the /pp switch of the dotnet msbuild

command, which shows which files are imported, their sources, and their contributions to the build without actually
building the project:

dotnet msbuild -pp:fullproject.xml

If the project has multiple target frameworks, the results of the command should be focused on only one of them by
specifying it as an MSBuild property:

dotnet msbuild -p:TargetFramework=netcoreapp2.0 -pp:fullproject.xml

The root <Project> element of the .csproj file has a new attribute called Sdk . Sdk specifies which SDK will be used
by the project. The SDK, as the layering document describes, is a set of MSBuild tasks and targets that can build .NET
Core code. The following SDKs are available for .NET Core:

https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference#preprocess
https://docs.microsoft.com/visualstudio/msbuild/msbuild-tasks
https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets

 PackageReference

<PackageReference Include="<package-id>" Version="" PrivateAssets="" IncludeAssets="" ExcludeAssets="" />

Version

IncludeAssets, ExcludeAssets and PrivateAssets

NOTE

DotNetCliToolReference

1. The .NET Core SDK with the ID of Microsoft.NET.Sdk

2. The .NET Core web SDK with the ID of Microsoft.NET.Sdk.Web

3. The .NET Core Razor Class Library SDK with the ID of Microsoft.NET.Sdk.Razor

4. The .NET Core Worker Service with the ID of Microsoft.NET.Sdk.Worker (since .NET Core 3.0)
5. The .NET Core WinForms and WPF with the ID of Microsoft.NET.Sdk.WindowsDesktop (since .NET Core 3.0)

You need to have the Sdk attribute set to one of those IDs on the <Project> element in order to use the .NET Core
tools and build your code.

A <PackageReference> item element specifies a NuGet dependency in the project. The Include attribute specifies the
package ID.

The required Version attribute specifies the version of the package to restore. The attribute respects the rules of the
NuGet versioning scheme. The default behavior is an exact version match. For example, specifying Version="1.2.3" is
equivalent to NuGet notation [1.2.3] for the exact 1.2.3 version of the package.

IncludeAssets attribute specifies which assets belonging to the package specified by <PackageReference> should be
consumed. By default, all package assets are included.

ExcludeAssets attribute specifies which assets belonging to the package specified by <PackageReference> should not
be consumed.

PrivateAssets attribute specifies which assets belonging to the package specified by <PackageReference> should be
consumed but not flow to the next project. The Analyzers , Build and ContentFiles assets are private by default
when this attribute is not present.

PrivateAssets is equivalent to the project.json/xproj SuppressParent element.

These attributes can contain one or more of the following items, separated by the semicolon ; character if more than
one is listed:

Compile – the contents of the lib folder are available to compile against.
Runtime – the contents of the runtime folder are distributed.
ContentFiles – the contents of the contentfiles folder are used.
Build – the props/targets in the build folder are used.
Native – the contents from native assets are copied to the output folder for runtime.
Analyzers – the analyzers are used.

Alternatively, the attribute can contain:

None – none of the assets are used.
All – all assets are used.

A <DotNetCliToolReference> item element specifies the CLI tool that the user wants to restore in the context of the
project. It's a replacement for the tools node in project.json.

https://docs.microsoft.com/nuget/consume-packages/package-references-in-project-files
https://docs.microsoft.com/nuget/reference/package-versioning#version-ranges-and-wildcards

<DotNetCliToolReference Include="<package-id>" Version="" />

Version

RuntimeIdentifiers

<RuntimeIdentifiers>win10-x64;osx.10.11-x64;ubuntu.16.04-x64</RuntimeIdentifiers>

RuntimeIdentifier

<RuntimeIdentifier>ubuntu.16.04-x64</RuntimeIdentifier>

PackageTargetFallback

<PackageTargetFallback>
 $(PackageTargetFallback);portable-net45+win8+wpa81+wp8
</PackageTargetFallback >

<PackageTargetFallback Condition="'$(TargetFramework)'=='netcoreapp2.1'">
 $(PackageTargetFallback);portable-net45+win8+wpa81+wp8
</PackageTargetFallback >

Build events

<PropertyGroup>
 <PreBuildEvent>"$(ProjectDir)PreBuildEvent.bat" "$(ProjectDir)..\" "$(ProjectDir)" "$(TargetDir)" />
</PropertyGroup>

Version specifies the version of the package to restore. The attribute respects the rules of the NuGet versioning
scheme. The default behavior is an exact version match. For example, specifying Version="1.2.3" is equivalent to
NuGet notation [1.2.3] for the exact 1.2.3 version of the package.

The <RuntimeIdentifiers> property element lets you specify a semicolon-delimited list of Runtime Identifiers (RIDs)
for the project. RIDs enable publishing self-contained deployments.

The <RuntimeIdentifier> property element allows you to specify only one Runtime Identifier (RID) for the project. The
RID enables publishing a self-contained deployment.

Use <RuntimeIdentifiers> (plural) instead if you need to publish for multiple runtimes. <RuntimeIdentifier> can
provide faster builds when only a single runtime is required.

The <PackageTargetFallback> property element allows you to specify a set of compatible targets to be used when
restoring packages. It's designed to allow packages that use the dotnet TxM (Target x Moniker) to operate with
packages that don't declare a dotnet TxM. If your project uses the dotnet TxM, then all the packages it depends on must
also have a dotnet TxM, unless you add the <PackageTargetFallback> to your project in order to allow non-dotnet
platforms to be compatible with dotnet.

The following example provides the fallbacks for all targets in your project:

The following example specifies the fallbacks only for the netcoreapp2.1 target:

The way that pre-build and post-build events are specified in the project file has changed. The properties
PreBuildEvent and PostBuildEvent are not recommended in the SDK-style project format, because macros such as
$(ProjectDir) are not resolved. For example, the following code is no longer supported:

In SDK-style projects, use an MSBuild target named PreBuild or PostBuild and set the BeforeTargets property for

https://docs.microsoft.com/nuget/create-packages/dependency-versions#version-ranges
https://docs.microsoft.com/nuget/schema/target-frameworks

<Target Name="PreBuild" BeforeTargets="PreBuildEvent">
 <Exec Command=""$(ProjectDir)PreBuildEvent.bat" "$(ProjectDir)..\"
"$(ProjectDir)" "$(TargetDir)"" />
</Target>

<Target Name="PostBuild" AfterTargets="PostBuildEvent">
 <Exec Command="echo Output written to $(TargetDir)" />
</Target>

NOTE

NuGet metadata properties

IsPackable

PackageVersion

PackageId

Title

Authors

PackageDescription

Description

Copyright

PackageRequireLicenseAcceptance

PackageLicenseExpression

PreBuild or the AfterTargets property for PostBuild . For the preceding example, use the following code:

You can use any name for the MSBuild targets, but the Visual Studio IDE recognizes PreBuild and PostBuild targets, so we
recommend using those names so that you can edit the commands in the Visual Studio IDE.

With the move to MSBuild, we have moved the input metadata that is used when packing a NuGet package from
project.json to .csproj files. The inputs are MSBuild properties so they have to go within a <PropertyGroup> group. The
following is the list of properties that are used as inputs to the packing process when using the dotnet pack command
or the Pack MSBuild target that is part of the SDK:

A Boolean value that specifies whether the project can be packed. The default value is true .

Specifies the version that the resulting package will have. Accepts all forms of NuGet version string. Default is the
value of $(Version) , that is, of the property Version in the project.

Specifies the name for the resulting package. If not specified, the pack operation will default to using the
AssemblyName or directory name as the name of the package.

A human-friendly title of the package, typically used in UI displays as on nuget.org and the Package Manager in Visual
Studio. If not specified, the package ID is used instead.

A semicolon-separated list of packages authors, matching the profile names on nuget.org. These are displayed in the
NuGet Gallery on nuget.org and are used to cross-reference packages by the same authors.

A long description of the package for UI display.

A long description for the assembly. If PackageDescription is not specified then this property is also used as the
description of the package.

Copyright details for the package.

A Boolean value that specifies whether the client must prompt the consumer to accept the package license before
installing the package. The default is false .

license-id = <short form license identifier from https://spdx.org/spdx-specification-21-web-
version#h.luq9dgcle9mo>

license-exception-id = <short form license exception identifier from https://spdx.org/spdx-specification-21-web-
version#h.ruv3yl8g6czd>

simple-expression = license-id / license-id”+”

compound-expression = 1*1(simple-expression /
 simple-expression "WITH" license-exception-id /
 compound-expression "AND" compound-expression /
 compound-expression "OR" compound-expression) /
 "(" compound-expression ")")

license-expression = 1*1(simple-expression / compound-expression / UNLICENSED)

NOTE

PackageLicenseFile

<PropertyGroup>
 <PackageLicenseFile>LICENSE.txt</PackageLicenseFile>
</PropertyGroup>
<ItemGroup>
 <None Include="licenses\LICENSE.txt" Pack="true" PackagePath="$(PackageLicenseFile)"/>
</ItemGroup>

PackageLicenseUrl

PackageIconUrl

PackageReleaseNotes

PackageTags

PackageOutputPath

IncludeSymbols

An SPDX license identifier or expression. For example, Apache-2.0 .

Here is the complete list of SPDX license identifiers. NuGet.org accepts only OSI or FSF approved licenses when using
license type expression.

The exact syntax of the license expressions is described below in ABNF.

Only one of PackageLicenseExpression , PackageLicenseFile and PackageLicenseUrl can be specified at a time.

Path to a license file within the package if you are using a license that hasn’t been assigned an SPDX identifier, or it is a
custom license (Otherwise PackageLicenseExpression is preferred)

Replaces PackageLicenseUrl , can't be combined with PackageLicenseExpression and requires Visual Studio 15.9.4, .NET
SDK 2.1.502 or 2.2.101, or newer.

You will need to ensure the license file is packed by adding it explicitly to the project, example usage:

An URL to the license that is applicable to the package. (deprecated since Visual Studio 15.9.4, .NET SDK 2.1.502 and
2.2.101)

A URL for a 64x64 image with transparent background to use as the icon for the package in UI display.

Release notes for the package.

A semicolon-delimited list of tags that designates the package.

Determines the output path in which the packed package will be dropped. Default is $(OutputPath) .

https://spdx.org/licenses/
https://spdx.org/licenses/
https://tools.ietf.org/html/rfc5234

SymbolPackageFormat

IncludeSource

IsTool

RepositoryUrl

RepositoryType

RepositoryBranch

RepositoryCommit

NoPackageAnalysis

MinClientVersion

IncludeBuildOutput

IncludeContentInPack

BuildOutputTargetFolder

ContentTargetFolders

NuspecFile

This Boolean value indicates whether the package should create an additional symbols package when the project is
packed. The symbols package's format is controlled by the SymbolPackageFormat property.

Specifies the format of the symbols package. If "symbols.nupkg", a legacy symbols package will be created with a
.symbols.nupkg extension containing PDBs, DLLs, and other output files. If "snupkg", a snupkg symbol package will be
created containing the portable PDBs. Default is "symbols.nupkg".

This Boolean value indicates whether the pack process should create a source package. The source package contains
the library's source code as well as PDB files. Source files are put under the src/ProjectName directory in the resulting
package file.

Specifies whether all output files are copied to the tools folder instead of the lib folder. Note that this is different from a
DotNetCliTool which is specified by setting the PackageType in the .csproj file.

Specifies the URL for the repository where the source code for the package resides and/or from which it's being built.

Specifies the type of the repository. Default is "git".

Specifies the name of the source branch in the repository. When the project is packaged in a NuGet package, it's added
to the package metadata.

Optional repository commit or changeset to indicate which source the package was built against. RepositoryUrl must
also be specified for this property to be included. When the project is packaged in a NuGet package, this commit or
changeset is added to the package metadata.

Specifies that pack should not run package analysis after building the package.

Specifies the minimum version of the NuGet client that can install this package, enforced by nuget.exe and the Visual
Studio Package Manager.

This Boolean values specifies whether the build output assemblies should be packed into the .nupkg file or not.

This Boolean value specifies whether any items that have a type of Content will be included in the resulting package
automatically. The default is true .

Specifies the folder where to place the output assemblies. The output assemblies (and other output files) are copied
into their respective framework folders.

This property specifies the default location of where all the content files should go if PackagePath is not specified for
them. The default value is "content;contentFiles".

Relative or absolute path to the .nuspec file being used for packing.

NOTE

NuspecBasePath

NuspecProperties

AssemblyInfo properties

Properties per attribute

ATTRIBUTE PROPERTY PROPERTY TO DISABLE

AssemblyCompanyAttribute Company GenerateAssemblyCompanyAttribute

AssemblyConfigurationAttribute Configuration GenerateAssemblyConfigurationAttribute

AssemblyCopyrightAttribute Copyright GenerateAssemblyCopyrightAttribute

AssemblyDescriptionAttribute Description GenerateAssemblyDescriptionAttribute

AssemblyFileVersionAttribute FileVersion GenerateAssemblyFileVersionAttribute

AssemblyInformationalVersionAttribute InformationalVersion GenerateAssemblyInformationalVersionAttribute

AssemblyProductAttribute Product GenerateAssemblyProductAttribute

AssemblyTitleAttribute AssemblyTitle GenerateAssemblyTitleAttribute

AssemblyVersionAttribute AssemblyVersion GenerateAssemblyVersionAttribute

NeutralResourcesLanguageAttribute NeutralLanguage GenerateNeutralResourcesLanguageAttribute

GenerateAssemblyInfo

If the .nuspec file is specified, it's used exclusively for packaging information and any information in the projects is not used.

Base path for the .nuspec file.

Semicolon separated list of key=value pairs.

Assembly attributes that were typically present in an AssemblyInfo file are now automatically generated from
properties.

Each attribute has a property that control its content and another to disable its generation as shown in the following
table:

Notes:

AssemblyVersion and FileVersion default is to take the value of $(Version) without suffix. For example, if
$(Version) is 1.2.3-beta.4 , then the value would be 1.2.3 .
InformationalVersion defaults to the value of $(Version) .
InformationalVersion has $(SourceRevisionId) appended if the property is present. It can be disabled using
IncludeSourceRevisionInInformationalVersion .
Copyright and Description properties are also used for NuGet metadata.
Configuration is shared with all the build process and set via the --configuration parameter of dotnet

commands.

https://docs.microsoft.com/en-us/dotnet/standard/assembly/set-attributes
https://docs.microsoft.com/dotnet/api/system.reflection.assemblycompanyattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyconfigurationattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblycopyrightattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblydescriptionattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyfileversionattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyinformationalversionattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyproductattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblytitleattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyversionattribute
https://docs.microsoft.com/dotnet/api/system.resources.neutralresourceslanguageattribute

GeneratedAssemblyInfoFile

A Boolean that enable or disable all the AssemblyInfo generation. The default value is true .

The path of the generated assembly info file. Default to a file in the $(IntermediateOutputPath) (obj) directory.

Migrate from .NET Core 2.0 to 2.1
8/28/2019 • 2 minutes to read • Edit Online

Update the project file to use 2.1 versions

See also

This article shows you the basic steps for migrating your .NET Core 2.0 app to 2.1. If you're looking to migrate your
ASP.NET Core app to 2.1, see Migrate from ASP.NET Core 2.0 to 2.1.

For an overview of the new features in .NET Core 2.1, see What's new in .NET Core 2.1.

<DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />

Open the project file (the *.csproj, *.vbproj, or *.fsproj file).

Change the target framework value from netcoreapp2.0 to netcoreapp2.1 . The target framework is defined
by the <TargetFramework> or <TargetFrameworks> element.

For example, change <TargetFramework>netcoreapp2.0</TargetFramework> to
<TargetFramework>netcoreapp2.1</TargetFramework> .

Remove <DotNetCliToolReference> references for tools that are bundled in the .NET Core 2.1 SDK (v 2.1.300
or later). These references include:

dotnet-watch (Microsoft.DotNet.Watcher.Tools)
dotnet-user-secrets (Microsoft.Extensions.SecretManager.Tools)
dotnet-sql-cache (Microsoft.Extensions.Caching.SqlConfig.Tools)
dotnet-ef (Microsoft.EntityFrameworkCore.Tools.DotNet)

In previous .NET Core SDK versions, the reference to one of these tools in your project file looks similar to
the following example:

Since this entry isn't used by the .NET Core SDK any longer, you'll see a warning similar to the following if
you still have references to one of these bundled tools in your project:

The tool 'Microsoft.EntityFrameworkCore.Tools.DotNet' is now included in the .NET Core SDK. Here is
information on resolving this warning.

Removing the <DotNetCliToolReference> references for those tools from your project file fixes this issue.

Migrate from ASP.NET Core 2.0 to 2.1
What's new in .NET Core 2.1

https://github.com/dotnet/docs/blob/master/docs/core/migration/20-21.md
https://docs.microsoft.com/aspnet/core/migration/20_21
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://github.com/aspnet/DotNetTools/blob/master/src/dotnet-watch/README.md
https://github.com/aspnet/DotNetTools/blob/master/src/dotnet-user-secrets/README.md
https://github.com/aspnet/DotNetTools/blob/master/src/dotnet-sql-cache/README.md
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/aspnet/core/migration/20_21

Migrating .NET Core projects from project.json
10/22/2019 • 4 minutes to read • Edit Online

Migration from project.json to csproj

Visual Studio

This document covers the following three migration scenarios for .NET Core projects:

1. Migration from a valid latest schema of project.json to csproj
2. Migration from DNX to csproj
3. Migration from RC3 and previous .NET Core csproj projects to the final format

This document is only applicable to older .NET Core projects that use project.json. It does not apply to migrating
from .NET Framework to .NET Core.

Migration from project.json to .csproj can be done using one of the following methods:

Visual Studio
dotnet migrate command-line tool

Both methods use the same underlying engine to migrate the projects, so the results will be the same for both. In
most cases, using one of these two ways to migrate the project.json to csproj is the only thing that is needed, and
no further manual editing of the project file is necessary. The resulting .csproj file will be named the same as the
containing directory name.

When you open an .xproj file or a solution file that references .xproj files in Visual Studio 2017 or Visual Studio
2019 version 16.2 and earlier, the One-way upgrade dialog appears. The dialog displays the projects to be
migrated. If you open a solution file, all the projects specified in the solution file are listed. Review the list of
projects to be migrated and select OK.

Visual Studio migrates the selected projects automatically. When migrating a solution, if you don't choose all
projects, the same dialog appears asking you to upgrade the remaining projects from that solution. After the
project is migrated, you can see and modify its contents by right-clicking the project in the Solution Explorer
window and selecting Edit <project name>.csproj.

Files that were migrated (project.json, global.json, .xproj, and solution file) are moved to a Backup folder. The

https://github.com/dotnet/docs/blob/master/docs/core/migration/index.md

IMPORTANT

dotnet migrate

NOTE

Migration from DNX to csproj

NOTE

Migration from earlier .NET Core csproj formats to RTM csproj

migrated solution file is upgraded to Visual Studio 2017 or Visual Studio 2019 and you won't be able to open that
solution file in Visual Studio 2015 or earlier versions. A file named UpgradeLog.htm that contains a migration
report is also saved and opened automatically.

In Visual Studio 2019 version 16.3 and later, you cannot load or migrate an .xproj file. Additionally, Visual Studio 2015 doesn't
provide the ability to migrate an .xproj file. If you're using one of these Visual Studio versions, either install a suitable version
of Visual Studio, or use the command line migration tool that's described next.

In the command-line scenario, you can use the dotnet migrate command. It migrates a project, a solution, or a set
of folders in that order, depending on which ones were found. When you migrate a project, the project and all its
dependencies are migrated.

Files that were migrated (project.json, global.json, and .xproj) are moved to a backup folder.

If you are using Visual Studio Code, the dotnet migrate command does not modify Visual Studio Code-specific files such
as tasks.json. These files need to be changed manually. This is also true if you are using an editor or Integrated Development
Environment (IDE) other than Visual Studio.

See A mapping between project.json and csproj properties for a comparison of project.json and .csproj formats.

If you get an error:

No executable found matching command dotnet-migrate

Run dotnet --version to see which version you are using. dotnet migrate was introduced in .NET Core SDK 1.0.0
and removed in version 3.0.100. You'll get this error if you have a global.json file in the current or parent directory,
and the sdk version it specifies is outside this range.

If you are still using DNX for .NET Core development, your migration process should be done in two stages:

1. Use the existing DNX migration guidance to migrate from DNX to project-json enabled CLI.
2. Follow the steps from the previous section to migrate from project.json to .csproj.

DNX has become officially deprecated during the Preview 1 release of the .NET Core CLI.

The .NET Core csproj format has been changing and evolving with each new pre-release version of the tooling.
There is no tool that will migrate your project file from earlier versions of csproj to the latest, so you need to
manually edit the project file. The actual steps depend on the version of the project file you are migrating. The
following is some guidance to consider based on the changes that happened between versions:

Remove the tools version property from the <Project> element, if it exists.
Remove the XML namespace (xmlns) from the <Project> element.

See also

If it doesn't exist, add the Sdk attribute to the <Project> element and set it to Microsoft.NET.Sdk or
Microsoft.NET.Sdk.Web . This attribute specifies that the project uses the SDK to be used. Microsoft.NET.Sdk.Web

is used for web apps.
Remove the <Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" /> and
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> statements from the top and bottom of the

project. These import statements are implied by the SDK, so there is no need for them to be in the project.
If you have Microsoft.NETCore.App or NETStandard.Library <PackageReference> items in your project, you
should remove them. These package references are implied by the SDK.
Remove the Microsoft.NET.Sdk <PackageReference> element, if it exists. The SDK reference comes through the
Sdk attribute on the <Project> element.

Remove the globs that are implied by the SDK. Leaving these globs in your project will cause an error on build
because compile items will be duplicated.

After these steps your project should be fully compatible with the RTM .NET Core csproj format.

For examples of before and after the migration from old csproj format to the new one, see the Updating Visual
Studio 2017 RC – .NET Core Tooling improvements article on the .NET blog.

Port, Migrate, and Upgrade Visual Studio Projects

https://aka.ms/sdkimplicitrefs
https://en.wikipedia.org/wiki/Glob_(programming)
https://devblogs.microsoft.com/dotnet/updating-visual-studio-2017-rc-net-core-tooling-improvements/
https://docs.microsoft.com/visualstudio/porting/port-migrate-and-upgrade-visual-studio-projects

A mapping between project.json and csproj
properties
2/23/2019 • 6 minutes to read • Edit Online

The csproj format

<Project Sdk="Microsoft.NET.Sdk">
...
</Project>

Common top-level properties
name

{
 "name": "MyProjectName"
}

<PropertyGroup>
 <AssemblyName>MyProjectName</AssemblyName>
 <PackageId>MyProjectName</PackageId>
</PropertyGroup>

version

{
 "version": "1.0.0-alpha-*"
}

By Nate McMaster

During the development of the .NET Core tooling, an important design change was made to no longer support
project.json files and instead move the .NET Core projects to the MSBuild/csproj format.

This article shows how the settings in project.json are represented in the MSBuild/csproj format so you can learn
how to use the new format and understand the changes made by the migration tools when you're upgrading your
project to the latest version of the tooling.

The new format, *.csproj, is an XML-based format. The following example shows the root node of a .NET Core
project using the Microsoft.NET.Sdk . For web projects, the SDK used is Microsoft.NET.Sdk.Web .

No longer supported. In csproj, this is determined by the project filename, which usually matches the directory
name. For example, MyProjectName.csproj .

By default, the project filename also specifies the value of the <AssemblyName> and <PackageId> properties.

The <AssemblyName> will have a different value than <PackageId> if buildOptions\outputName property was defined
in project.json. For more information, see Other common build options.

Use the VersionPrefix and VersionSuffix properties:

https://github.com/dotnet/docs/blob/master/docs/core/tools/project-json-to-csproj.md
https://github.com/natemcmaster

<PropertyGroup>
 <VersionPrefix>1.0.0</VersionPrefix>
 <VersionSuffix>alpha</VersionSuffix>
</PropertyGroup>

<PropertyGroup>
 <Version>1.0.0-alpha</Version>
</PropertyGroup>

Other common root-level options

{
 "authors": ["Anne", "Bob"],
 "company": "Contoso",
 "language": "en-US",
 "title": "My library",
 "description": "This is my library.\r\nAnd it's really great!",
 "copyright": "Nugetizer 3000",
 "userSecretsId": "xyz123"
}

<PropertyGroup>
 <Authors>Anne;Bob</Authors>
 <Company>Contoso</Company>
 <NeutralLanguage>en-US</NeutralLanguage>
 <AssemblyTitle>My library</AssemblyTitle>
 <Description>This is my library.
And it's really great!</Description>
 <Copyright>Nugetizer 3000</Copyright>
 <UserSecretsId>xyz123</UserSecretsId>
</PropertyGroup>

frameworks
One target framework

{
 "frameworks": {
 "netcoreapp1.0": {}
 }
}

<PropertyGroup>
 <TargetFramework>netcoreapp1.0</TargetFramework>
</PropertyGroup>

Multiple target frameworks

You can also use the Version property, but this may override version settings during packaging:

{
 "frameworks": {
 "netcoreapp1.0": {},
 "net451": {}
 }
}

<PropertyGroup>
 <TargetFrameworks>netcoreapp1.0;net451</TargetFrameworks>
</PropertyGroup>

dependencies

IMPORTANT

NETStandard.Library metapackage

{
 "dependencies": {
 "NETStandard.Library": "1.6.0"
 }
}

<PropertyGroup>
 <NetStandardImplicitPackageVersion>1.6.0</NetStandardImplicitPackageVersion>
</PropertyGroup>

Microsoft.NETCore.App metapackage

{
 "dependencies": {
 "Microsoft.NETCore.App": "1.0.0"
 }
}

<PropertyGroup>
 <RuntimeFrameworkVersion>1.0.3</RuntimeFrameworkVersion>
</PropertyGroup>

Top-level dependencies

Use the TargetFrameworks property to define your list of target frameworks. Use semi-colon to separate multiple
framework values.

If the dependency is a project and not a package, the format is different. For more information, see the dependency type
section.

Note that the <RuntimeFrameworkVersion> value in the migrated project is determined by the version of the SDK
you have installed.

{
 "dependencies": {
 "Microsoft.AspNetCore": "1.1.0"
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.0" />
</ItemGroup>

Per-framework dependencies

{
 "framework": {
 "net451": {
 "dependencies": {
 "System.Collections.Immutable": "1.3.1"
 }
 },
 "netstandard1.5": {
 "dependencies": {
 "Newtonsoft.Json": "9.0.1"
 }
 }
 }
}

<ItemGroup Condition="'$(TargetFramework)'=='net451'">
 <PackageReference Include="System.Collections.Immutable" Version="1.3.1" />
</ItemGroup>

<ItemGroup Condition="'$(TargetFramework)'=='netstandard1.5'">
 <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
</ItemGroup>

imports

{
 "dependencies": {
 "YamlDotNet": "4.0.1-pre309"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": [
 "dnxcore50",
 "dotnet"
]
 }
 }
}

<PropertyGroup>
 <PackageTargetFallback>dnxcore50;dotnet</PackageTargetFallback>
</PropertyGroup>
<ItemGroup>
 <PackageReference Include="YamlDotNet" Version="4.0.1-pre309" />
</ItemGroup>

 dependency type
type: project

{
 "dependencies": {
 "MyOtherProject": "1.0.0-*",
 "AnotherProject": {
 "type": "project"
 }
 }
}

<ItemGroup>
 <ProjectReference Include="..\MyOtherProject\MyOtherProject.csproj" />
 <ProjectReference Include="..\AnotherProject\AnotherProject.csproj" />
</ItemGroup>

NOTE

type: build

{
 "dependencies": {
 "Microsoft.EntityFrameworkCore.Design": {
 "version": "1.1.0",
 "type": "build"
 }
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="1.1.0" PrivateAssets="All" />
</ItemGroup>

type: platform

{
 "dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.1.0",
 "type": "platform"
 }
 }
}

runtimes

This will break the way that dotnet pack --version-suffix $suffix determines the dependency version of a project
reference.

There is no equivalent in csproj.

{
 "runtimes": {
 "win7-x64": {},
 "osx.10.11-x64": {},
 "ubuntu.16.04-x64": {}
 }
}

<PropertyGroup>
 <RuntimeIdentifiers>win7-x64;osx.10.11-x64;ubuntu.16.04-x64</RuntimeIdentifiers>
</PropertyGroup>

Standalone apps (self-contained deployment)

tools
{
 "tools": {
 "Microsoft.EntityFrameworkCore.Tools.DotNet": "1.0.0-*"
 }
}

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="1.0.0" />
</ItemGroup>

NOTE

buildOptions

emitEntryPoint

{
 "buildOptions": {
 "emitEntryPoint": true
 }
}

<PropertyGroup>
 <OutputType>Exe</OutputType>
</PropertyGroup>

In project.json, defining a runtimes section means the app was standalone during build and publish. In MSBuild,
all projects are portable during build, but can be published as standalone.

dotnet publish --framework netcoreapp1.0 --runtime osx.10.11-x64

For more information, see Self-contained deployments (SCD).

imports on tools are not supported in csproj. Tools that need imports will not work with the new Microsoft.NET.Sdk .

See also Files.

If emitEntryPoint was false , the value of OutputType is converted to Library , which is the default value:

{
 "buildOptions": {
 "emitEntryPoint": false
 }
}

<PropertyGroup>
 <OutputType>Library</OutputType>
 <!-- or, omit altogether. It defaults to 'Library' -->
</PropertyGroup>

keyFile

{
 "buildOptions": {
 "keyFile": "MyKey.snk"
 }
}

<PropertyGroup>
 <AssemblyOriginatorKeyFile>MyKey.snk</AssemblyOriginatorKeyFile>
 <SignAssembly>true</SignAssembly>
 <PublicSign Condition="'$(OS)' != 'Windows_NT'">true</PublicSign>
</PropertyGroup>

Other common build options

{
 "buildOptions": {
 "warningsAsErrors": true,
 "nowarn": ["CS0168", "CS0219"],
 "xmlDoc": true,
 "preserveCompilationContext": true,
 "outputName": "Different.AssemblyName",
 "debugType": "portable",
 "allowUnsafe": true,
 "define": ["TEST", "OTHERCONDITION"]
 }
}

<PropertyGroup>
 <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
 <NoWarn>$(NoWarn);CS0168;CS0219</NoWarn>
 <GenerateDocumentationFile>true</GenerateDocumentationFile>
 <PreserveCompilationContext>true</PreserveCompilationContext>
 <AssemblyName>Different.AssemblyName</AssemblyName>
 <DebugType>portable</DebugType>
 <AllowUnsafeBlocks>true</AllowUnsafeBlocks>
 <DefineConstants>$(DefineConstants);TEST;OTHERCONDITION</DefineConstants>
</PropertyGroup>

packOptions

The keyFile element expands to three properties in MSBuild:

See also Files.

Common pack options

{
 "packOptions": {
 "summary": "numl is a machine learning library intended to ease the use of using standard modeling
techniques for both prediction and clustering.",
 "tags": ["machine learning", "framework"],
 "releaseNotes": "Version 0.9.12-beta",
 "iconUrl": "http://numl.net/images/ico.png",
 "projectUrl": "http://numl.net",
 "licenseUrl": "https://raw.githubusercontent.com/sethjuarez/numl/master/LICENSE.md",
 "requireLicenseAcceptance": false,
 "repository": {
 "type": "git",
 "url": "https://raw.githubusercontent.com/sethjuarez/numl"
 },
 "owners": ["Seth Juarez"]
 }
}

<PropertyGroup>
 <!-- summary is not migrated from project.json, but you can use the <Description> property for that if
needed. -->
 <PackageTags>machine learning;framework</PackageTags>
 <PackageReleaseNotes>Version 0.9.12-beta</PackageReleaseNotes>
 <PackageIconUrl>http://numl.net/images/ico.png</PackageIconUrl>
 <PackageProjectUrl>http://numl.net</PackageProjectUrl>
 <PackageLicenseUrl>https://raw.githubusercontent.com/sethjuarez/numl/master/LICENSE.md</PackageLicenseUrl>
 <PackageRequireLicenseAcceptance>false</PackageRequireLicenseAcceptance>
 <RepositoryType>git</RepositoryType>
 <RepositoryUrl>https://raw.githubusercontent.com/sethjuarez/numl</RepositoryUrl>
 <!-- owners is not supported in MSBuild -->
</PropertyGroup>

scripts
{
 "scripts": {
 "precompile": "generateCode.cmd",
 "postpublish": ["obfuscate.cmd", "removeTempFiles.cmd"]
 }
}

<Target Name="MyPreCompileTarget" BeforeTargets="Build">
 <Exec Command="generateCode.cmd" />
</Target>

<Target Name="MyPostCompileTarget" AfterTargets="Publish">
 <Exec Command="obfuscate.cmd" />
 <Exec Command="removeTempFiles.cmd" />
</Target>

There is no equivalent for the owners element in MSBuild. For summary , you can use the MSBuild <Description>

property, even though the value of summary is not migrated automatically to that property, since that property is
mapped to the description element.

Their equivalent in MSBuild are targets:

https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets

runtimeOptions
{
 "runtimeOptions": {
 "configProperties": {
 "System.GC.Server": true,
 "System.GC.Concurrent": true,
 "System.GC.RetainVM": true,
 "System.Threading.ThreadPool.MinThreads": 4,
 "System.Threading.ThreadPool.MaxThreads": 25
 }
 }
}

{
 "configProperties": {
 "System.GC.Concurrent": true,
 "System.GC.RetainVM": true,
 "System.Threading.ThreadPool.MinThreads": 4,
 "System.Threading.ThreadPool.MaxThreads": 25
 }
}

<PropertyGroup>
 <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>

<PropertyGroup>
 <ServerGarbageCollection>true</ServerGarbageCollection>
 <ConcurrentGarbageCollection>true</ConcurrentGarbageCollection>
 <RetainVMGarbageCollection>true</RetainVMGarbageCollection>
 <ThreadPoolMinThreads>4</ThreadPoolMinThreads>
 <ThreadPoolMaxThreads>25</ThreadPoolMaxThreads>
</PropertyGroup>

shared
{
 "shared": "shared/**/*.cs"
}

files

All settings in this group, except for the "System.GC.Server" property, are placed into a file called
runtimeconfig.template.json in the project folder, with options lifted to the root object during the migration process:

The "System.GC.Server" property is migrated into the csproj file:

However, you can set all those values in the csproj as well as MSBuild properties:

Not supported in csproj. You must instead create include content files in your .nuspec file. For more information,
see Including content files.

In project.json, build and pack could be extended to compile and embed from different folders. In MSBuild, this is
done using items. The following example is a common conversion:

https://docs.microsoft.com/nuget/schema/nuspec#including-content-files
https://docs.microsoft.com/visualstudio/msbuild/common-msbuild-project-items

{
 "buildOptions": {
 "compile": {
 "copyToOutput": "notes.txt",
 "include": "../Shared/*.cs",
 "exclude": "../Shared/Not/*.cs"
 },
 "embed": {
 "include": "../Shared/*.resx"
 }
 },
 "packOptions": {
 "include": "Views/",
 "mappings": {
 "some/path/in/project.txt": "in/package.txt"
 }
 },
 "publishOptions": {
 "include": [
 "files/",
 "publishnotes.txt"
]
 }
}

<ItemGroup>
 <Compile Include="..\Shared*.cs" Exclude="..\Shared\Not*.cs" />
 <EmbeddedResource Include="..\Shared*.resx" />
 <Content Include="Views***" PackagePath="%(Identity)" />
 <None Include="some/path/in/project.txt" Pack="true" PackagePath="in/package.txt" />

 <None Include="notes.txt" CopyToOutputDirectory="Always" />
 <!-- CopyToOutputDirectory = { Always, PreserveNewest, Never } -->

 <Content Include="files***" CopyToPublishDirectory="PreserveNewest" />
 <None Include="publishnotes.txt" CopyToPublishDirectory="Always" />
 <!-- CopyToPublishDirectory = { Always, PreserveNewest, Never } -->
</ItemGroup>

NOTE

testRunner
xUnit

Many of the default globbing patterns are added automatically by the .NET Core SDK. For more information, see Default
Compile Item Values.

All MSBuild ItemGroup elements support Include , Exclude , and Remove .

Package layout inside the .nupkg can be modified with PackagePath="path" .

Except for Content , most item groups require explicitly adding Pack="true" to be included in the package.
Content will be put in the content folder in a package since the MSBuild <IncludeContentInPack> property is set to
true by default. For more information, see Including content in a package.

PackagePath="%(Identity)" is a short way of setting package path to the project-relative file path.

https://en.wikipedia.org/wiki/Glob_(programming)
https://aka.ms/sdkimplicititems
https://docs.microsoft.com/nuget/schema/msbuild-targets#including-content-in-a-package

{
 "testRunner": "xunit",
 "dependencies": {
 "dotnet-test-xunit": "<any>"
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0-*" />
 <PackageReference Include="xunit" Version="2.2.0-*" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0-*" />
</ItemGroup>

MSTest

{
 "testRunner": "mstest",
 "dependencies": {
 "dotnet-test-mstest": "<any>"
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0-*" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.12-*" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.11-*" />
</ItemGroup>

See also
High-level overview of changes in CLI

Migrating from DNX to .NET Core CLI (project.json)
4/8/2019 • 8 minutes to read • Edit Online

Overview

Main changes in the tooling

No more DNVM

Different commands

The RC1 release of .NET Core and ASP.NET Core 1.0 introduced DNX tooling. The RC2 release of .NET Core and
ASP.NET Core 1.0 moved from DNX to the .NET Core CLI.

As a slight refresher, let's recap what DNX was about. DNX was a runtime and a toolset used to build .NET Core
and, more specifically, ASP.NET Core 1.0 applications. It consisted of 3 main pieces:

1. DNVM - an install script for obtaining DNX
2. DNX (Dotnet Execution Runtime) - the runtime that executes your code
3. DNU (Dotnet Developer Utility) - tooling for managing dependencies, building and publishing your

applications

With the introduction of the CLI, all of the above are now part of a single toolset. However, since DNX was
available in RC1 timeframe, you might have projects that were built using it that you would want to move off to
the new CLI tooling.

This migration guide will cover the essentials on how to migrate projects off of DNX and onto .NET Core CLI. If
you are just starting a project on .NET Core from scratch, you can freely skip this document.

There are some general changes in the tooling that should be outlined first.

DNVM, short for DotNet Version Manager was a bash/PowerShell script used to install a DNX on your machine.
It helped users get the DNX they need from the feed they specified (or default ones) as well as mark a certain DNX
"active", which would put it on the $PATH for the given session. This would allow you to use the various tools.

DNVM was discontinued because its feature set was made redundant by changes coming in the .NET Core CLI
tools.

The CLI tools come packaged in two main ways:

1. Native installers for a given platform
2. Install script for other situations (like CI servers)

Given this, the DNVM install features are not needed. But what about the runtime selection features?

You reference a runtime in your project.json by adding a package of a certain version to your dependencies.
With this change, your application will be able to use the new runtime bits. Getting these bits to your machine is
the same as with the CLI: you install the runtime via one of the native installers it supports or via its install script.

If you were using DNX, you used some commands from one of its three parts (DNX, DNU or DNVM). With the
CLI, some of these commands change, some are not available and some are the same but have slightly different
semantics.

The table below shows the mapping between the DNX/DNU commands and their CLI counterparts.

https://github.com/dotnet/docs/blob/master/docs/core/migration/from-dnx.md

DNX COMMAND CLI COMMAND DESCRIPTION

dnx run dotnet run Run code from source.

dnu build dotnet build Build an IL binary of your code.

dnu pack dotnet pack Package up a NuGet package of your
code.

dnx [command] (for example, "dnx
web")

N/A* In DNX world, run a command as
defined in the project.json.

dnu install N/A* In the DNX world, install a package as a
dependency.

dnu restore dotnet restore Restore dependencies specified in your
project.json. (see note)

dnu publish dotnet publish Publish your application for deployment
in one of the three forms (portable,
portable with native and standalone).

dnu wrap N/A* In DNX world, wrap a project.json in
csproj.

dnu commands N/A* In DNX world, manage the globally
installed commands.

DNX features that are not supported

Global commands

Installing dependencies

Running your code

(*) - these features are not supported in the CLI by design.

As the table above shows, there are features from the DNX world that we decided not to support in the CLI, at
least for the time being. This section will go through the most important ones and outline the rationale behind not
supporting them as well as workarounds if you do need them.

DNU came with a concept called "global commands". These were, essentially, console applications packaged up as
NuGet packages with a shell script that would invoke the DNX you specified to run the application.

The CLI does not support this concept. It does, however, support the concept of adding per-project commands that
can be invoked using the familiar dotnet <command> syntax.

As of v1, the .NET Core CLI tools don't have an install command for installing dependencies. In order to install a
package from NuGet, you would need to add it as a dependency to your project.json file and then run
dotnet restore (see note).

There are two main ways to run your code. One is from source, with dotnet run . Unlike dnx run , this will not do
any in-memory compilation. It will actually invoke dotnet build to build your code and then run the built binary.

Another way is using the dotnet itself to run your code. This is done by providing a path to your assembly:
dotnet path/to/an/assembly.dll .

Migrating your DNX project to .NET Core CLI

Changing the global.json file

{
 "sdk": {
 "version": "1.0.0-preview2-003121"
 }
}

Migrating the project file

"buildOptions": {
 "emitEntryPoint": true
}

In addition to using new commands when working with your code, there are three major things left in migrating
from DNX:

1. Migrate the global.json file if you have it to be able to use CLI.
2. Migrating the project file (project.json) itself to the CLI tooling.
3. Migrating off of any DNX APIs to their BCL counterparts.

The global.json file acts like a solution file for both the RC1 and RC2 (or later) projects. In order for the CLI tools
(as well as Visual Studio) to differentiate between RC1 and later versions, they use the "sdk": { "version" }

property to make the distinction which project is RC1 or later. If global.json doesn't have this node at all, it is
assumed to be the latest.

In order to update the global.json file, either remove the property or set it to the exact version of the tools that
you wish to use, in this case 1.0.0-preview2-003121:

The CLI and DNX both use the same basic project system based on project.json file. The syntax and the
semantics of the project file are pretty much the same, with small differences based on the scenarios. There are
also some changes to the schema which you can see in the schema file.

If you are building a console application, you need to add the following snippet to your project file:

This instructs dotnet build to emit an entry point for your application, effectively making your code runnable. If
you are building a class library, simply omit the above section. Of course, once you add the above snippet to your
project.json file, you need to add a static entry point. With the move off DNX, the DI services it provided are no

longer available and thus this needs to be a basic .NET entry point: static void Main() .

If you have a "commands" section in your project.json , you can remove it. Some of the commands that used to
exist as DNU commands, such as Entity Framework CLI commands, are being ported to be per-project extensions
to the CLI. If you built your own commands that you are using in your projects, you need to replace them with CLI
extensions. In this case, the commands node in project.json needs to be replaced by the tools node and it needs
to list the tools dependencies.

After these things are done, you need to decide which type of portability you wish for you app. With .NET Core, we
have invested into providing a spectrum of portability options that you can choose from. For instance, you may
want to have a fully portable application or you may want to have a self-contained application. The portable
application option is more like .NET Framework applications work: it needs a shared component to execute it on
the target machine (.NET Core). The self-contained application doesn't require .NET Core to be installed on the
target, but you have to produce one application for each OS you wish to support. These portability types and more
are discussed in the application portability type document.

Once you make a call on what type of portability you want, you need to change your targeted framework(s). If you

http://json.schemastore.org/project

 "frameworks": {
 "netcoreapp1.0": {
 "imports": ["dnxcore50", "portable-net45+win8"]
 }
 }

NOTE

were writing applications for .NET Core, you were most likely using dnxcore50 as your targeted framework. With
the CLI and the changes that the new .NET Standard brought, the framework needs to be one of the following:

1. netcoreapp1.0 - if you are writing applications on .NET Core (including ASP.NET Core applications)
2. netstandard1.6 - if you are writing class libraries for .NET Core

If you are using other dnx targets, like dnx451 you will need to change those as well. dnx451 should be changed
to net451 . Please refer to the .NET Standard topic for more information.

Your project.json is now mostly ready. You need to go through your dependencies list and update the
dependencies to their newer versions, especially if you are using ASP.NET Core dependencies. If you were using
separate packages for BCL APIs, you can use the runtime package as explained in the application portability type
document.

Once you are ready, you can try restoring with dotnet restore (see note). Depending on the version of your
dependencies, you may encounter errors if NuGet cannot resolve the dependencies for one of the targeted
frameworks above. This is a "point-in-time" problem; as time progresses, more and more packages will include
support for these frameworks. For now, if you run into this, you can use the imports statement within the
framework node to specify to NuGet that it can restore the packages targeting the framework within the "imports"

statement. The restoring errors you get in this case should provide enough information to tell you which
frameworks you need to import. If you are slightly lost or new to this, in general, specifying dnxcore50 and
portable-net45+win8 in the imports statement should do the trick. The JSON snippet below shows how this looks

like:

Running dotnet build will show any eventual build errors, though there shouldn't be too many of them. After
your code is building and running properly, you can test it out with the runner. Execute
dotnet <path-to-your-assembly> and see it run.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

.NET Core application deployment
10/30/2019 • 5 minutes to read • Edit Online

Framework-dependent deployments (FDD)

Why create a framework-dependent deployment?

You can create three types of deployments for .NET Core applications:

Framework-dependent deployment. As the name implies, framework-dependent deployment (FDD)
relies on the presence of a shared system-wide version of .NET Core on the target system. Because .NET
Core is already present, your app is also portable between installations of .NET Core. Your app contains
only its own code and any third-party dependencies that are outside of the .NET Core libraries. FDDs
contain .dll files that can be launched by using the dotnet utility from the command line. For example,
dotnet app.dll runs an application named app .

Self-contained deployment. Unlike FDD, a self-contained deployment (SCD) doesn't rely on the presence
of shared components on the target system. All components, including both the .NET Core libraries and
the .NET Core runtime, are included with the application and are isolated from other .NET Core
applications. SCDs include an executable (such as app.exe on Windows platforms for an application
named app), which is a renamed version of the platform-specific .NET Core host, and a .dll file (such as
app.dll), which is the actual application.

Framework-dependent executables. Produces an executable that runs on a target platform. Similar to
FDDs, framework-dependent executables (FDE) are platform-specific and aren't self-contained. These
deployments still rely on the presence of a shared system-wide version of .NET Core to run. Unlike an
SCD, your app only contains your code and any third-party dependencies that are outside of the .NET
Core libraries. FDEs produce an executable that runs on the target platform.

For an FDD, you deploy only your app and third-party dependencies. Your app will use the version of .NET
Core that's present on the target system. This is the default deployment model for .NET Core and ASP.NET
Core apps that target .NET Core.

Deploying an FDD has a number of advantages:

You don't have to define the target operating systems that your .NET Core app will run on in advance.
Because .NET Core uses a common PE file format for executables and libraries regardless of operating
system, .NET Core can execute your app regardless of the underlying operating system. For more
information on the PE file format, see .NET Assembly File Format.

The size of your deployment package is small. You only deploy your app and its dependencies, not .NET
Core itself.

Unless overridden, FDDs will use the latest serviced runtime installed on the target system. This allows
your application to use the latest patched version of the .NET Core runtime.

Multiple apps use the same .NET Core installation, which reduces both disk space and memory usage on
host systems.

There are also a few disadvantages:

Your app can run only if the version of .NET Core your app targets, or a later version, is already installed
on the host system.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/index.md
https://docs.microsoft.com/en-us/dotnet/standard/assembly/file-format

Self-contained deployments (SCD)

Why deploy a self-contained deployment?

Framework-dependent executables (FDE)

Why deploy a framework-dependent executable?

It's possible for the .NET Core runtime and libraries to change without your knowledge in future
releases. In rare cases, this may change the behavior of your app.

For a self-contained deployment, you deploy your app and any required third-party dependencies along with
the version of .NET Core that you used to build the app. Creating an SCD doesn't include the native
dependencies of .NET Core on various platforms, so these must be present before the app runs. For more
information on version binding at runtime, see the article on version binding in .NET Core.

Starting with NET Core 2.1 SDK (version 2.1.300), .NET Core supports patch version roll forward. When you
create a self-contained deployment, .NET Core tools automatically include the latest serviced runtime of the
.NET Core version that your application targets. (The latest serviced runtime includes security patches and other
bug fixes.) The serviced runtime does not have to be present on your build system; it is downloaded
automatically from NuGet.org. For more information, including instructions on how to opt out of patch version
roll forward, see Self-contained deployment runtime roll forward.

FDD and SCD deployments use separate host executables, so you can sign a host executable for an SCD with
your publisher signature.

Deploying a Self-contained deployment has two major advantages:

You have sole control of the version of .NET Core that is deployed with your app. .NET Core can be
serviced only by you.

You can be assured that the target system can run your .NET Core app, since you're providing the version
of .NET Core that it will run on.

It also has a number of disadvantages:

Because .NET Core is included in your deployment package, you must select the target platforms for
which you build deployment packages in advance.

The size of your deployment package is relatively large, since you have to include .NET Core as well as
your app and its third-party dependencies.

Starting with .NET Core 2.0, you can reduce the size of your deployment on Linux systems by
approximately 28 MB by using .NET Core globalization invariant mode. Ordinarily, .NET Core on Linux
relies on the ICU libraries for globalization support. In invariant mode, the libraries are not included with
your deployment, and all cultures behave like the invariant culture.

Deploying numerous self-contained .NET Core apps to a system can consume significant amounts of
disk space, since each app duplicates .NET Core files.

Starting with .NET Core 2.2, you can deploy your app as an FDE, along with any required third-party
dependencies. Your app will use the version of .NET Core that's installed on the target system.

Deploying an FDE has a number of advantages:

The size of your deployment package is small. You only deploy your app and its dependencies, not .NET
Core itself.

Multiple apps use the same .NET Core installation, which reduces both disk space and memory usage on
host systems.

https://github.com/dotnet/core/blob/master/Documentation/prereqs.md
https://github.com/dotnet/corefx/blob/master/Documentation/architecture/globalization-invariant-mode.md
http://icu-project.org
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.invariantculture#System_Globalization_CultureInfo_InvariantCulture

Step-by-step examples

See also

Your app can be run by calling the published executable without invoking the dotnet utility directly.

There are also a few disadvantages:

Your app can run only if the version of .NET Core your app targets, or a later version, is already installed
on the host system.

It's possible for the .NET Core runtime and libraries to change without your knowledge in future
releases. In rare cases, this may change the behavior of your app.

You must publish your app for each target platform.

For step-by-step examples of deploying .NET Core apps with CLI tools, see Deploying .NET Core Apps with
CLI Tools. For step-by-step examples of deploying .NET Core apps with Visual Studio, see Deploying .NET Core
Apps with Visual Studio.

Deploying .NET Core Apps with CLI Tools
Deploying .NET Core Apps with Visual Studio
Packages, Metapackages and Frameworks
.NET Core Runtime IDentifier (RID) catalog

Publish .NET Core apps with the CLI
10/3/2019 • 7 minutes to read • Edit Online

PUBLISH MODE SDK VERSION COMMAND

Framework-dependent deployment 2.x dotnet publish -c Release

Framework-dependent executable 2.2 dotnet publish -c Release -r
<RID> --self-contained false

3.0 dotnet publish -c Release -r
<RID> --self-contained false

3.0* dotnet publish -c Release

Self-contained deployment 2.1 dotnet publish -c Release -r
<RID> --self-contained true

2.2 dotnet publish -c Release -r
<RID> --self-contained true

3.0 dotnet publish -c Release -r
<RID> --self-contained true

Publishing basics

This article demonstrates how you can publish your .NET Core application from the command line. .NET Core
provides three ways to publish your applications. Framework-dependent deployment produces a cross-platform
.dll file that uses the locally installed .NET Core runtime. Framework-dependent executable produces a platform-
specific executable that uses the locally installed .NET Core runtime. Self-contained executable produces a
platform-specific executable and includes a local copy of the .NET Core runtime.

For an overview of these publishing modes, see .NET Core Application Deployment.

Looking for some quick help on using the CLI? The following table shows some examples of how to publish your
app. You can specify the target framework with the -f <TFM> parameter or by editing the project file. For more
information, see Publishing basics.

* When using SDK version 3.0, framework-dependent executable is the default publishing mode when running
the basic dotnet publish command. This only applies when the project targets either .NET Core 2.1 or .NET
Core 3.0.

The <TargetFramework> setting of the project file specifies the default target framework when you publish your
app. You can change the target framework to any valid Target Framework Moniker (TFM). For example, if your
project uses <TargetFramework>netcoreapp2.2</TargetFramework> , a binary that targets .NET Core 2.2 is created. The
TFM specified in this setting is the default target used by the dotnet publish command.

If you want to target more than one framework, you can set the <TargetFrameworks> setting to more than one
TFM value separated by a semicolon. You can publish one of the frameworks with the dotnet publish -f <TFM>

command. For example, if you have <TargetFrameworks>netcoreapp2.1;netcoreapp2.2</TargetFrameworks> and run
dotnet publish -f netcoreapp2.1 , a binary that targets .NET Core 2.1 is created.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/deploy-with-cli.md
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Native dependencies

Sample app

mkdir apptest1
cd apptest1
dotnet new console
dotnet add package Figgle

using System;

namespace apptest1
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(Figgle.FiggleFonts.Standard.Render("Hello, World!"));
 }
 }
}

Unless otherwise set, the output directory of the dotnet publish command is
./bin/<BUILD-CONFIGURATION>/<TFM>/publish/ . The default BUILD-CONFIGURATION mode is Debug unless

changed with the -c parameter. For example, dotnet publish -c Release -f netcoreapp2.1 publishes to
myfolder/bin/Release/netcoreapp2.1/publish/ .

If you use .NET Core SDK 3.0, the default publish mode for apps that target .NET Core versions 2.1, 2.2, or 3.0 is
framework-dependent executable.

If you use .NET Core SDK 2.1, the default publish mode for apps that target .NET Core versions 2.1, 2.2 is
framework-dependent deployment.

If your app has native dependencies, it may not run on a different operating system. For example, if your app uses
the native Windows API, it won't run on macOS or Linux. You would need to provide platform-specific code and
compile an executable for each platform.

Consider also, if a library you referenced has a native dependency, your app may not run on every platform.
However, it's possible a NuGet package you're referencing has included platform-specific versions to handle the
required native dependencies for you.

When distributing an app with native dependencies, you may need to use the dotnet publish -r <RID> switch to
specify the target platform you want to publish for. For a list of runtime identifiers, see Runtime Identifier (RID)
catalog.

More information about platform-specific binaries is covered in the Framework-dependent executable and Self-
contained deployment sections.

You can use the following app to explore the publishing commands. The app is created by running the following
commands in your terminal:

The Program.cs or Program.vb file that is generated by the console template needs to be changed to the
following:

Imports System

Module Program
 Sub Main(args As String())
 Console.WriteLine(Figgle.FiggleFonts.Standard.Render("Hello, World!"))
 End Sub
End Module

 _ _ _ _ __ __ _ _ _
			___			___ \ \ / /__ _ __		__		
	_		/ _ \		/ _ \ \ \ /\ / / _ \| '__		/ _`			
_	__/		(_)	\ V V / (_)				(_		_
_		_	___	_	_	___() _/_/ ___/	_		_	__,_(_)
 |/

Framework-dependent deployment

Framework-dependent executable

When you run the app (dotnet run), the following output is displayed:

For the .NET Core SDK 2.x CLI, framework-dependent deployment (FDD) is the default mode for the basic
dotnet publish command.

When you publish your app as an FDD, a <PROJECT-NAME>.dll file is created in the
./bin/<BUILD-CONFIGURATION>/<TFM>/publish/ folder. To run your app, navigate to the output folder and use the
dotnet <PROJECT-NAME>.dll command.

Your app is configured to target a specific version of .NET Core. That targeted .NET Core runtime is required to be
on the machine where you want to run your app. For example, if your app targets .NET Core 2.2, any machine that
your app runs on must have the .NET Core 2.2 runtime installed. As stated in the Publishing basics section, you
can edit your project file to change the default target framework or to target more than one framework.

Publishing an FDD creates an app that automatically rolls-forward to the latest .NET Core security patch available
on the system that runs the app. For more information on version binding at compile time, see Select the .NET
Core version to use.

For the .NET Core SDK 3.x CLI, framework-dependent executable (FDE) is the default mode for the basic
dotnet publish command. You don't need to specify any other parameters as long as you want to target the

current operating system.

In this mode, a platform-specific executable host is created to host your cross-platform app. This mode is similar
to FDD as FDD requires a host in the form of the dotnet command. The host executable filename varies per
platform, and is named something similar to <PROJECT-FILE>.exe . You can run this executable directly instead of
calling dotnet <PROJECT-FILE>.dll which is still an acceptable way to run the app.

Your app is configured to target a specific version of .NET Core. That targeted .NET Core runtime is required to be
on the machine where you want to run your app. For example, if your app targets .NET Core 2.2, any machine that
your app runs on must have the .NET Core 2.2 runtime installed. As stated in the Publishing basics section, you
can edit your project file to change the default target framework or to target more than one framework.

Publishing an FDE creates an app that automatically rolls-forward to the latest .NET Core security patch available
on the system that runs the app. For more information on version binding at compile time, see Select the .NET
Core version to use.

You must (except for .NET Core 3.x when you target the current platform) use the following switches with the

NOTE

Self-contained deployment

NOTE

See also

dotnet publish command to publish an FDE:

-r <RID> This switch uses an identifier (RID) to specify the target platform. For a list of runtime identifiers,
see Runtime Identifier (RID) catalog.

--self-contained false This switch tells the .NET Core SDK to create an executable as an FDE.

Whenever you use the -r switch, the output folder path changes to:
./bin/<BUILD-CONFIGURATION>/<TFM>/<RID>/publish/

If you use the example app, run dotnet publish -f netcoreapp2.2 -r win10-x64 --self-contained false . This
command creates the following executable: ./bin/Debug/netcoreapp2.2/win10-x64/publish/apptest1.exe

You can reduce the total size of your deployment by enabling globalization invariant mode. This mode is useful for
applications that are not globally aware and that can use the formatting conventions, casing conventions, and string
comparison and sort order of the invariant culture. For more information about globalization invariant mode and how to
enable it, see .NET Core Globalization Invariant Mode.

When you publish a self-contained deployment (SCD), the .NET Core SDK creates a platform-specific executable.
Publishing an SCD includes all required .NET Core files to run your app but it doesn't include the native
dependencies of .NET Core. These dependencies must be present on the system before the app runs.

Publishing an SCD creates an app that doesn't roll-forward to the latest available .NET Core security patch. For
more information on version binding at compile time, see Select the .NET Core version to use.

You must use the following switches with the dotnet publish command to publish an SCD:

-r <RID> This switch uses an identifier (RID) to specify the target platform. For a list of runtime identifiers,
see Runtime Identifier (RID) catalog.

--self-contained true This switch tells the .NET Core SDK to create an executable as an SCD.

You can reduce the total size of your deployment by enabling globalization invariant mode. This mode is useful for
applications that are not globally aware and that can use the formatting conventions, casing conventions, and string
comparison and sort order of the invariant culture. For more information about globalization invariant mode and how to
enable it, see .NET Core Globalization Invariant Mode.

.NET Core Application Deployment Overview

.NET Core Runtime IDentifier (RID) catalog

https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.invariantculture#System_Globalization_CultureInfo_InvariantCulture
https://github.com/dotnet/corefx/blob/master/Documentation/architecture/globalization-invariant-mode.md
https://github.com/dotnet/core/blob/master/Documentation/prereqs.md
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.invariantculture#System_Globalization_CultureInfo_InvariantCulture
https://github.com/dotnet/corefx/blob/master/Documentation/architecture/globalization-invariant-mode.md

Deploy .NET Core apps with Visual Studio
10/30/2019 • 15 minutes to read • Edit Online

Framework-dependent deployment

You can deploy a .NET Core application either as a framework-dependent deployment, which includes your
application binaries but depends on the presence of .NET Core on the target system, or as a self-contained
deployment, which includes both your application and .NET Core binaries. For an overview of .NET Core
application deployment, see .NET Core Application Deployment.

The following sections show how to use Microsoft Visual Studio to create the following kinds of deployments:

Framework-dependent deployment
Framework-dependent deployment with third-party dependencies
Self-contained deployment
Self-contained deployment with third-party dependencies

For information on using Visual Studio to develop .NET Core applications, see Prerequisites for .NET Core on
Windows.

Deploying a framework-dependent deployment with no third-party dependencies simply involves building,
testing, and publishing the app. A simple example written in C# illustrates the process.

1. Create the project.

Select File > New > Project. In the New Project dialog, expand your language's (C# or Visual Basic)
project categories in the Installed project types pane, choose .NET Core, and then select the Console App
(.NET Core) template in the center pane. Enter a project name, such as "FDD", in the Name text box. Select
the OK button.

2. Add the application's source code.

Open the Program.cs or Program.vb file in the editor and replace the auto-generated code with the
following code. It prompts the user to enter text and displays the individual words entered by the user. It
uses the regular expression \w+ to separate the words in the input text.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/deploy-with-vs.md

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 {
 Console.WriteLine("\nNo words were identified in your input.");
 }
 else
 {
 Console.WriteLine($"\nThere are {matches.Count} words in your string:");
 for (int ctr = 0; ctr < matches.Count; ctr++)
 {
 Console.WriteLine($" #{ctr,2}: '{matches[ctr].Value}' at position
{matches[ctr].Index}");
 }
 }
 }
 }
}

Imports System.Text.RegularExpressions

Namespace Applications.ConsoleApps
 Public Module ConsoleParser
 Public Sub Main()
 Console.WriteLine("Enter any text, followed by <Enter>:")
 Console.WriteLine()
 Dim s = Console.ReadLine()
 ShowWords(s)
 Console.Write($"{vbCrLf}Press any key to continue... ")
 Console.ReadKey()
 End Sub

 Private Sub ShowWords(s As String)
 Dim pattern = "\w+"
 Dim matches = Regex.Matches(s, pattern)
 Console.WriteLine()
 If matches.Count = 0 Then
 Console.WriteLine("No words were identified in your input.")
 Else
 Console.WriteLine($"There are {matches.Count} words in your string:")
 For ctr = 0 To matches.Count - 1
 Console.WriteLine($" #{ctr,2}: '{matches(ctr).Value}' at position
{matches(ctr).Index}")
 Next
 End If
 Console.WriteLine()
 End Sub
 End Module
End Namespace

3. Create a Debug build of your app.

Select Build > Build Solution. You can also compile and run the Debug build of your application by
selecting Debug > Start Debugging.

4. Deploy your app.

After you've debugged and tested the program, create the files to be deployed with your app. To publish
from Visual Studio, do the following:

a. Change the solution configuration from Debug to Release on the toolbar to build a Release (rather
than a Debug) version of your app.

b. Right-click on the project (not the solution) in Solution Explorer and select Publish.

c. In the Publish tab, select Publish. Visual Studio writes the files that comprise your application to the
local file system.

d. The Publish tab now shows a single profile, FolderProfile. The profile's configuration settings are
shown in the Summary section of the tab.

The resulting files are placed in a directory named Publish on Windows and publish on Unix systems
that is in a subdirectory of your project's .\bin\release\netcoreapp2.1 subdirectory.

Along with your application's files, the publishing process emits a program database (.pdb) file that contains
debugging information about your app. The file is useful primarily for debugging exceptions. You can choose not
to package it with your application's files. You should, however, save it in the event that you want to debug the
Release build of your app.

Deploy the complete set of application files in any way you like. For example, you can package them in a Zip file,

Framework-dependent deployment with third-party dependencies

Self-contained deployment without third-party dependencies

use a simple copy command, or deploy them with any installation package of your choice. Once installed, users
can then execute your application by using the dotnet command and providing the application filename, such as
dotnet fdd.dll .

In addition to the application binaries, your installer should also either bundle the shared framework installer or
check for it as a prerequisite as part of the application installation. Installation of the shared framework requires
Administrator/root access since it is machine-wide.

Deploying a framework-dependent deployment with one or more third-party dependencies requires that any
dependencies be available to your project. The following additional steps are required before you can build your
app:

1. Use the NuGet Package Manager to add a reference to a NuGet package to your project; and if the
package is not already available on your system, install it. To open the package manager, select Tools >
NuGet Package Manager > Manage NuGet Packages for Solution.

2. Confirm that Newtonsoft.Json is installed on your system and, if it is not, install it. The Installed tab lists
NuGet packages installed on your system. If Newtonsoft.Json is not listed there, select the Browse tab and
enter "Newtonsoft.Json" in the search box. Select Newtonsoft.Json and, in the right pane, select your project
before selecting Install.

3. If Newtonsoft.Json is already installed on your system, add it to your project by selecting your project in the
right pane of the Manage Packages for Solution tab.

Note that a framework-dependent deployment with third-party dependencies is only as portable as its third-party
dependencies. For example, if a third-party library only supports macOS, the app isn't portable to Windows
systems. This happens if the third-party dependency itself depends on native code. A good example of this is
Kestrel server , which requires a native dependency on libuv. When an FDD is created for an application with this
kind of third-party dependency, the published output contains a folder for each Runtime Identifier (RID) that the
native dependency supports (and that exists in its NuGet package).

Deploying a self-contained deployment with no third-party dependencies involves creating the project, modifying
the csproj file, building, testing, and publishing the app. A simple example written in C# illustrates the process. You
begin by creating, coding, and testing your project just as you would a framework-dependent deployment:

1. Create the project.

Select File > New > Project. In the New Project dialog, expand your language's (C# or Visual Basic)
project categories in the Installed project types pane, choose .NET Core, and then select the Console App
(.NET Core) template in the center pane. Enter a project name, such as "SCD", in the Name text box, and
select the OK button.

2. Add the application's source code.

Open the Program.cs or Program.vb file in your editor, and replace the auto-generated code with the
following code. It prompts the user to enter text and displays the individual words entered by the user. It
uses the regular expression \w+ to separate the words in the input text.

https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://github.com/libuv/libuv

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 {
 Console.WriteLine("\nNo words were identified in your input.");
 }
 else
 {
 Console.WriteLine($"\nThere are {matches.Count} words in your string:");
 for (int ctr = 0; ctr < matches.Count; ctr++)
 {
 Console.WriteLine($" #{ctr,2}: '{matches[ctr].Value}' at position
{matches[ctr].Index}");
 }
 }
 }
 }
}

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <RuntimeHostConfigurationOption Include="System.Globalization.Invariant" Value="true" />
 </ItemGroup>
</Project>

Imports System.Text.RegularExpressions

Namespace Applications.ConsoleApps
 Public Module ConsoleParser
 Public Sub Main()
 Console.WriteLine("Enter any text, followed by <Enter>:")
 Console.WriteLine()
 Dim s = Console.ReadLine()
 ShowWords(s)
 Console.Write($"{vbCrLf}Press any key to continue... ")
 Console.ReadKey()
 End Sub

 Private Sub ShowWords(s As String)
 Dim pattern = "\w+"
 Dim matches = Regex.Matches(s, pattern)
 Console.WriteLine()
 If matches.Count = 0 Then
 Console.WriteLine("No words were identified in your input.")
 Else
 Console.WriteLine($"There are {matches.Count} words in your string:")
 For ctr = 0 To matches.Count - 1
 Console.WriteLine($" #{ctr,2}: '{matches(ctr).Value}' at position
{matches(ctr).Index}")
 Next
 End If
 Console.WriteLine()
 End Sub
 End Module
End Namespace

3. Determine whether you want to use globalization invariant mode.

Particularly if your app targets Linux, you can reduce the total size of your deployment by taking advantage
of globalization invariant mode. Globalization invariant mode is useful for applications that are not globally
aware and that can use the formatting conventions, casing conventions, and string comparison and sort
order of the invariant culture.

To enable invariant mode, right-click on your project (not the solution) in Solution Explorer, and select
Edit SCD.csproj or Edit SCD.vbproj. Then add the following highlighted lines to the file:

1. Create a Debug build of your application.

Select Build > Build Solution. You can also compile and run the Debug build of your application by
selecting Debug > Start Debugging. This debugging step lets you identify problems with your application
when it's running on your host platform. You still will have to test it on each of your target platforms.

If you've enabled globalization invariant mode, be particularly sure to test whether the absence of culture-
sensitive data is suitable for your application.

Once you've finished debugging, you can publish your self-contained deployment:

https://github.com/dotnet/corefx/blob/master/Documentation/architecture/globalization-invariant-mode.md
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.invariantculture#System_Globalization_CultureInfo_InvariantCulture

Visual Studio 15.6 and earlier
Visual Studio 15.7 and later

After you've debugged and tested the program, create the files to be deployed with your app for each platform
that it targets.

To publish your app from Visual Studio, do the following:

<PropertyGroup>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
</PropertyGroup>

1. Define the platforms that your app will target.

a. Right-click on your project (not the solution) in Solution Explorer and select Edit SCD.csproj.

b. Create a <RuntimeIdentifiers> tag in the <PropertyGroup> section of your csproj file that defines the
platforms your app targets, and specify the runtime identifier (RID) of each platform that you target.
Note that you also need to add a semicolon to separate the RIDs. See Runtime IDentifier catalog for
a list of runtime identifiers.

For example, the following example indicates that the app runs on 64-bit Windows 10 operating systems
and the 64-bit OS X Version 10.11 operating system.

Note that the <RuntimeIdentifiers> element can go into any <PropertyGroup> that you have in your csproj
file. A complete sample csproj file appears later in this section.

2. Publish your app.

After you've debugged and tested the program, create the files to be deployed with your app for each
platform that it targets.

To publish your app from Visual Studio, do the following:

a. Change the solution configuration from Debug to Release on the toolbar to build a Release (rather
than a Debug) version of your app.

b. Right-click on the project (not the solution) in Solution Explorer and select Publish.

c. In the Publish tab, select Publish. Visual Studio writes the files that comprise your application to the
local file system.

d. The Publish tab now shows a single profile, FolderProfile. The profile's configuration settings are
shown in the Summary section of the tab. Target Runtime identifies which runtime has been
published, and Target Location identifies where the files for the self-contained deployment were
written.

e. Visual Studio by default writes all published files to a single directory. For convenience, it's best to
create separate profiles for each target runtime and to place published files in a platform-specific
directory. This involves creating a separate publishing profile for each target platform. So now
rebuild the application for each platform by doing the following:

a. Select Create new profile in the Publish dialog.

b. In the Pick a publish target dialog, change the Choose a folder location to
bin\Release\PublishOutput\win10-x64. Select OK.

c. Select the new profile (FolderProfile1) in the list of profiles, and make sure that the Target
Runtime is win10-x64 . If it isn't, select Settings. In the Profile Settings dialog, change the

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
 </PropertyGroup>
</Project>

Self-contained deployment with third-party dependencies

Target Runtime to win10-x64 and select Save. Otherwise, select Cancel.

d. Select Publish to publish your app for 64-bit Windows 10 platforms.

e. Follow the previous steps again to create a profile for the osx.10.11-x64 platform. The Target
Location is bin\Release\PublishOutput\osx.10.11-x64, and the Target Runtime is
osx.10.11-x64 . The name that Visual Studio assigns to this profile is FolderProfile2.

Note that each target location contains the complete set of files (both your app files and all .NET Core files)
needed to launch your app.

Along with your application's files, the publishing process emits a program database (.pdb) file that contains
debugging information about your app. The file is useful primarily for debugging exceptions. You can choose not
to package it with your application's files. You should, however, save it in the event that you want to debug the
Release build of your app.

Deploy the published files in any way you like. For example, you can package them in a Zip file, use a simple copy

command, or deploy them with any installation package of your choice.

The following is the complete csproj file for this project.

Deploying a self-contained deployment with one or more third-party dependencies involves adding the
dependencies. The following additional steps are required before you can build your app:

1. Use the NuGet Package Manager to add a reference to a NuGet package to your project; and if the
package is not already available on your system, install it. To open the package manager, select Tools >
NuGet Package Manager > Manage NuGet Packages for Solution.

2. Confirm that Newtonsoft.Json is installed on your system and, if it is not, install it. The Installed tab lists
NuGet packages installed on your system. If Newtonsoft.Json is not listed there, select the Browse tab and
enter "Newtonsoft.Json" in the search box. Select Newtonsoft.Json and, in the right pane, select your project
before selecting Install.

3. If Newtonsoft.Json is already installed on your system, add it to your project by selecting your project in the
right pane of the Manage Packages for Solution tab.

The following is the complete csproj file for this project:

Visual Studio 15.6 and earlier
Visual Studio 15.7 and later

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.2" />
 </ItemGroup>
</Project>

See also

When you deploy your application, any third-party dependencies used in your app are also contained with your
application files. Third-party libraries aren't required on the system on which the app is running.

Note that you can only deploy a self-contained deployment with a third-party library to platforms supported by
that library. This is similar to having third-party dependencies with native dependencies in your framework-
dependent deployment, where the native dependencies won't exist on the target platform unless they were
previously installed there.

.NET Core Application Deployment

.NET Core Runtime IDentifier (RID) catalog

How to create a NuGet package with .NET Core
command-line interface (CLI) tools
10/22/2019 • 2 minutes to read • Edit Online

NOTE

NOTE

cd src/SuperAwesomeLibrary

dotnet pack

$ ls bin/Debug
netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg

The following shows command-line samples using Unix. The dotnet pack command as shown here works the same way on
Windows.

.NET Standard and .NET Core libraries are expected to be distributed as NuGet packages. This is in fact how all of
the .NET Standard libraries are distributed and consumed. This is most easily done with the dotnet pack

command.

Imagine that you just wrote an awesome new library that you would like to distribute over NuGet. You can create a
NuGet package with cross platform tools to do exactly that! The following example assumes a library called
SuperAwesomeLibrary which targets netstandard1.0 .

If you have transitive dependencies; that is, a project which depends on another package, you'll need to make sure
to restore packages for your entire solution with the dotnet restore command before creating a NuGet package.
Failing to do so will result in the dotnet pack command to not work properly.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

After ensuring packages are restored, you can navigate to the directory where a library lives:

Then it's just a single command from the command line:

Your /bin/Debug folder will now look like this:

Note that this will produce a package which is capable of being debugged. If you want to build a NuGet package
with release binaries, all you need to do is add the --configuration (or -c) switch and use release as the
argument.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/creating-nuget-packages.md
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

dotnet pack --configuration release

$ ls bin/release
netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg

Don't confuse dotnet pack with dotnet publish

See also

Your /bin folder will now have a release folder containing your NuGet package with release binaries:

And now you have the necessary files to publish a NuGet package!

It is important to note that at no point is the dotnet publish command involved. The dotnet publish command is
for deploying applications with all of their dependencies in the same bundle -- not for generating a NuGet package
to be distributed and consumed via NuGet.

Quickstart: Create and publish a package

https://docs.microsoft.com/nuget/quickstart/create-and-publish-a-package-using-the-dotnet-cli

Self-contained deployment runtime roll forward
10/17/2019 • 2 minutes to read • Edit Online

Patch version roll forward overview

NOTE

How to avoid restore during publish

No-restore argument with dotnet publish options

.NET Core self-contained application deployments include both the .NET Core libraries and the .NET Core
runtime. Starting in .NET Core 2.1 SDK (version 2.1.300), a self-contained application deployment publishes the
highest patch runtime on your machine. By default, dotnet publish for a self-contained deployment selects the
latest version installed as part of the SDK on the publishing machine. This enables your deployed application to
run with security fixes (and other fixes) available during publish . The application must be re-published to obtain a
new patch. Self-contained applications are created by specifying -r <RID> on the dotnet publish command or by
specifying the runtime identifier (RID) in the project file (csproj / vbproj) or on the command line.

restore , build and publish are dotnet commands that can run separately. The runtime choice is part of the
restore operation, not publish or build . If you call publish , the latest patch version will be chosen. If you call
publish with the --no-restore argument, then you may not get the desired patch version because a prior
restore may not have been executed with the new self-contained application publishing policy. In this case, a

build error is generated with text similar to the following:

"The project was restored using Microsoft.NETCore.App version 2.0.0, but with current settings, version 2.0.6
would be used instead. To resolve this issue, make sure the same settings are used for restore and for subsequent
operations such as build or publish. Typically this issue can occur if the RuntimeIdentifier property is set during
build or publish but not during restore."

restore and build can be run implicitly as part of another command, like publish . When run implicitly as part of
another command, they are provided with additional context so that the right artifacts are produced. When you publish

with a runtime (for example, dotnet publish -r linux-x64), the implicit restore restores packages for the linux-x64
runtime. If you call restore explicitly, it does not restore runtime packages by default, because it doesn't have that context.

Running restore as part of the publish operation may be undesirable for your scenario. To avoid restore

during publish while creating self-contained applications, do the following:

Set the RuntimeIdentifiers property to a semicolon-separated list of all the RIDs to be published.
Set the TargetLatestRuntimePatch property to true .

If you want to create both self-contained applications and framework-dependent applications with the same
project file, and you want to use the --no-restore argument with dotnet publish , then choose one of the
following:

1. Prefer the framework-dependent behavior. If the application is framework-dependent, this is the default
behavior. If the application is self-contained, and can use an unpatched 2.1.0 local runtime, set the
TargetLatestRuntimePatch to false in the project file.

2. Prefer the self-contained behavior. If the application is self-contained, this is the default behavior. If the

https://github.com/dotnet/docs/blob/master/docs/core/deploying/runtime-patch-selection.md
https://github.com/dotnet/designs/pull/36

application is framework-dependent, and requires the latest patch installed, set TargetLatestRuntimePatch to
true in the project file.

3. Take explicit control of the runtime framework version by setting RuntimeFrameworkVersion to the specific
patch version in the project file.

Runtime package store
9/19/2019 • 5 minutes to read • Edit Online

\dotnet
 \store
 \x64
 \netcoreapp2.0
 \microsoft.applicationinsights
 \microsoft.aspnetcore
 ...
 \x86
 \netcoreapp2.0
 \microsoft.applicationinsights
 \microsoft.aspnetcore
 ...

Preparing a runtime environment

<Project Sdk="Microsoft.NET.Sdk">
 <ItemGroup>
 <PackageReference Include="<NUGET_PACKAGE>" Version="<VERSION>" />
 <!-- Include additional packages here -->
 </ItemGroup>
</Project>

Starting with .NET Core 2.0, it's possible to package and deploy apps against a known set of packages that exist in
the target environment. The benefits are faster deployments, lower disk space usage, and improved startup
performance in some cases.

This feature is implemented as a runtime package store, which is a directory on disk where packages are stored
(typically at /usr/local/share/dotnet/store on macOS/Linux and C:/Program Files/dotnet/store on Windows).
Under this directory, there are subdirectories for architectures and target frameworks. The file layout is similar to
the way that NuGet assets are laid out on disk:

A target manifest file lists the packages in the runtime package store. Developers can target this manifest when
publishing their app. The target manifest is typically provided by the owner of the targeted production
environment.

The administrator of a runtime environment can optimize apps for faster deployments and lower disk space use
by building a runtime package store and the corresponding target manifest.

The first step is to create a package store manifest that lists the packages that compose the runtime package store.
This file format is compatible with the project file format (csproj).

Example

The following example package store manifest (packages.csproj) is used to add Newtonsoft.Json and Moq to a
runtime package store:

https://github.com/dotnet/docs/blob/master/docs/core/deploying/runtime-store.md
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/nuget/create-packages/supporting-multiple-target-frameworks#framework-version-folder-structure
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/moq/

<Project Sdk="Microsoft.NET.Sdk">
 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.3" />
 <PackageReference Include="Moq" Version="4.7.63" />
 </ItemGroup>
</Project>

dotnet store --manifest <PATH_TO_MANIFEST_FILE> --runtime <RUNTIME_IDENTIFIER> --framework <FRAMEWORK>

dotnet store --manifest packages.csproj --runtime win10-x64 --framework netcoreapp2.0 --framework-version
2.0.0

<StoreArtifacts>
 <Package Id="Newtonsoft.Json" Version="10.0.3" />
 <Package Id="Castle.Core" Version="4.1.0" />
 <Package Id="Moq" Version="4.7.63" />
</StoreArtifacts>

Publishing an app against a target manifest

dotnet publish --manifest <PATH_TO_MANIFEST_FILE>

dotnet publish --manifest manifest.xml

Provision the runtime package store by executing dotnet store with the package store manifest, runtime, and
framework:

Example

You can pass multiple target package store manifest paths to a single dotnet store command by repeating the
option and path in the command.

By default, the output of the command is a package store under the .dotnet/store subdirectory of the user's profile.
You can specify a different location using the --output <OUTPUT_DIRECTORY> option. The root directory of the store
contains a target manifest artifact.xml file. This file can be made available for download and be used by app
authors who want to target this store when publishing.

Example

The following artifact.xml file is produced after running the previous example. Note that Castle.Core is a
dependency of Moq , so it's included automatically and appears in the artifacts.xml manifest file.

If you have a target manifest file on disk, you specify the path to the file when publishing your app with the
dotnet publish command:

Example

You deploy the resulting published app to an environment that has the packages described in the target manifest.
Failing to do so results in the app failing to start.

Specify multiple target manifests when publishing an app by repeating the option and path (for example,
--manifest manifest1.xml --manifest manifest2.xml). When you do so, the app is trimmed for the union of

packages specified in the target manifest files provided to the command.

https://www.nuget.org/packages/Castle.Core/

Specifying target manifests in the project file

<PropertyGroup>
 <TargetManifestFiles>manifest1.xml;manifest2.xml</TargetManifestFiles>
</PropertyGroup>

ASP.NET Core implicit store

<PropertyGroup>
 <PublishWithAspNetCoreTargetManifest>false</PublishWithAspNetCoreTargetManifest>
</PropertyGroup>

NOTE

An alternative to specifying target manifests with the dotnet publish command is to specify them in the project
file as a semicolon-separated list of paths under a <TargetManifestFiles> tag.

Specify the target manifests in the project file only when the target environment for the app is well-known, such as
for .NET Core projects. This isn't the case for open-source projects. The users of an open-source project typically
deploy it to different production environments. These production environments generally have different sets of
packages pre-installed. You can't make assumptions about the target manifest in such environments, so you
should use the --manifest option of dotnet publish .

The ASP.NET Core implicit store applies only to ASP.NET Core 2.0. We strongly recommend applications use
ASP.NET Core 2.1 and later, which does not use the implicit store. ASP.NET Core 2.1 and later use the shared
framework.

The runtime package store feature is used implicitly by an ASP.NET Core app when the app is deployed as a
framework-dependent deployment (FDD) app. The targets in Microsoft.NET.Sdk.Web include manifests
referencing the implicit package store on the target system. Additionally, any FDD app that depends on the
Microsoft.AspNetCore.All package results in a published app that contains only the app and its assets and not the

packages listed in the Microsoft.AspNetCore.All metapackage. It's assumed that those packages are present on
the target system.

The runtime package store is installed on the host when the .NET Core SDK is installed. Other installers may
provide the runtime package store, including Zip/tarball installations of the .NET Core SDK, apt-get , Red Hat
Yum, the .NET Core Windows Server Hosting bundle, and manual runtime package store installations.

When deploying a framework-dependent deployment (FDD) app, make sure that the target environment has the
.NET Core SDK installed. If the app is deployed to an environment that doesn't include ASP.NET Core, you can
opt out of the implicit store by specifying <PublishWithAspNetCoreTargetManifest> set to false in the
project file as in the following example:

For self-contained deployment (SCD) apps, it's assumed that the target system doesn't necessarily contain the required
manifest packages. Therefore, <PublishWithAspNetCoreTargetManifest> cannot be set to true for an SCD app.

If you deploy an application with a manifest dependency that's present in the deployment (the assembly is present
in the bin folder), the runtime package store isn't used on the host for that assembly. The bin folder assembly is
used regardless of its presence in the runtime package store on the host.

The version of the dependency indicated in the manifest must match the version of the dependency in the runtime
package store. If you have a version mismatch between the dependency in the target manifest and the version that
exists in the runtime package store and the app doesn't include the required version of the package in its

https://github.com/aspnet/websdk

See also

deployment, the app fails to start. The exception includes the name of the target manifest that called for the
runtime package store assembly, which helps you troubleshoot the mismatch.

When the deployment is trimmed on publish, only the specific versions of the manifest packages you indicate are
withheld from the published output. The packages at the versions indicated must be present on the host for the
app to start.

dotnet-publish
dotnet-store

Introduction to .NET and Docker
11/14/2019 • 3 minutes to read • Edit Online

Docker basics

Images

Containers

Registries

Dockerfile

.NET Core can easily run in a Docker container. Containers provide a lightweight way to isolate your application
from the rest of the host system, sharing just the kernel, and using resources given to your application. If you're
unfamiliar with Docker, it's highly recommended that you read through Docker's overview documentation.

For more information about how to install Docker, see the download page for Docker Desktop: Community
Edition.

There are a few concepts you should be familiar with. The Docker client has a command line interface program you
use to manage images and containers. As previously stated, you should take the time to read through the Docker
overview documentation.

An image is an ordered collection of filesystem changes that form the basis of a container. The image doesn't have
a state and is read-only. Much the time an image is based on another image, but with some customization. For
example, when you create an new image for your application, you would base it on an existing image that already
contains the .NET Core runtime.

Because containers are created from images, images have a set of run parameters (such as a starting executable)
that run when the container starts.

A container is a runnable instance of an image. As you build your image, you deploy your application and
dependencies. Then, multiple containers can be instantiated, each isolated from one another. Each container
instance has its own filesystem, memory, and network interface.

Container registries are a collection of image repositories. You can base your images on a registry image. You can
create containers directly from an image in a registry. The relationship between Docker containers, images, and
registries is an important concept when architecting and building containerized applications or microservices. This
approach greatly shortens the time between development and deployment.

Docker has a public registry hosted at the Docker Hub that you can use. .NET Core related images are listed at the
Docker Hub.

The Microsoft Container Registry (MCR) is the official source of Microsoft-provided container images. The MCR is
built on Azure CDN to provide globally-replicated images. However, the MCR does not have a public-facing
website and the primary way to learn about Microsoft-provided container images is through the Microsoft Docker
Hub pages.

A Dockerfile is a file that defines a set of instructions that creates an image. Each instruction in the Dockerfile
creates a layer in the image. For the most part, when you rebuild the image, only the layers that have changed are
rebuilt. The Dockerfile can be distributed to others and allows them to recreate a new image in the same manner
you created it. While this allows you to distribute the instructions on how to create the image, the main way to
distribute your image is to publish it to a registry.

https://github.com/dotnet/docs/blob/master/docs/core/docker/introduction.md
https://docs.docker.com/engine/docker-overview/
https://www.docker.com/products/docker-desktop
https://docs.docker.com/engine/docker-overview/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-containers-images-registries
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/index
https://hub.docker.com/
https://hub.docker.com/_/microsoft-dotnet-core/
https://hub.docker.com/_/microsoft-dotnet-core/

.NET Core images

Azure services

Next steps

Official .NET Core Docker images are published to the Microsoft Container Registry (MCR) and are discoverable
at the Microsoft .NET Core Docker Hub repository. Each repository contains images for different combinations of
the .NET (SDK or Runtime) and OS that you can use.

Microsoft provides images that are tailored for specific scenarios. For example, the ASP.NET Core repository
provides images that are built for running ASP.NET Core apps in production.

Various Azure services support containers. You create a Docker image for your application and deploy it to one of
the following services:

Azure Kubernetes Service (AKS)
Scale and orchestrate Linux containers using Kubernetes.

Azure App Service
Deploy web apps or APIs using Linux containers in a PaaS environment.

Azure Container Instances
Host your container in the cloud without any higher-level management services.

Azure Batch
Run repetitive compute jobs using containers.

Azure Service Fabric
Lift, shift, and modernize .NET applications to microservices using Windows Server containers.

Azure Container Registry
Store and manage container images across all types of Azure deployments.

Learn how to containerize a .NET Core application.
Learn how to containerize an ASP.NET Core application.
Try the Learn ASP.NET Core Microservice tutorial.
Learn about Container Tools in Visual Studio

https://hub.docker.com/_/microsoft-dotnet-core/
https://hub.docker.com/_/microsoft-dotnet-core-aspnet/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/app-service/containers/
https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/services/batch/
https://azure.microsoft.com/services/service-fabric/
https://azure.microsoft.com/services/container-registry/
https://docs.microsoft.com/aspnet/core/host-and-deploy/docker/building-net-docker-images
https://dotnet.microsoft.com/learn/web/aspnet-microservice-tutorial/intro
https://docs.microsoft.com/visualstudio/containers/overview

Tutorial: Containerize a .NET Core app
10/17/2019 • 11 minutes to read • Edit Online

Prerequisites

Use SDK version 2.2

{
 "sdk": {
 "version": "2.2.100"
 }
}

Create .NET Core app

dotnet new console -o app -n myapp

This tutorial teaches you how to build a Docker image that contains your .NET Core application. The image can be
used to create containers for your local development environment, private cloud, or public cloud.

You'll learn to:

Create and publish a simple .NET Core app
Create and configure a Dockerfile for .NET Core
Build a Docker image
Create and run a Docker container

You'll understand the Docker container build and deploy tasks for a .NET Core application. The Docker platform
uses the Docker engine to quickly build and package apps as Docker images. These images are written in the
Dockerfile format to be deployed and run in a layered container.

Install the following prerequisites:

.NET Core 2.2 SDK
If you have .NET Core installed, use the dotnet --info command to determine which SDK you're using.

Docker Community Edition

A temporary working folder for the Dockerfile and .NET Core example app. In this tutorial, the name
docker-working is used as the working folder.

If you're using an SDK that is newer, like 3.0, make sure that your app is forced to use the 2.2 SDK. Create a file
named global.json in your working folder and paste in the following JSON code:

Save this file. The presence of file will force .NET Core to use version 2.2 for any dotnet command called from this
folder and below.

You need a .NET Core app that the Docker container will run. Open your terminal, create a working folder if you
haven't already, and enter it. In the working folder, run the following command to create a new project in a
subdirectory named app:

Your folder tree will look like the following:

https://github.com/dotnet/docs/blob/master/docs/core/docker/build-container.md
https://dotnet.microsoft.com/download
https://www.docker.com/products/docker-desktop

docker-working
│ global.json
│
└───app
 │ myapp.csproj
 │ Program.cs
 │
 └───obj
 myapp.csproj.nuget.cache
 myapp.csproj.nuget.g.props
 myapp.csproj.nuget.g.targets
 project.assets.json

> dotnet run
Hello World!

using System;

namespace myapp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

using System;

namespace myapp
{
 class Program
 {
 static void Main(string[] args)
 {
 var counter = 0;
 var max = args.Length != 0 ? Convert.ToInt32(args[0]) : -1;
 while (max == -1 || counter < max)
 {
 counter++;
 Console.WriteLine($"Counter: {counter}");
 System.Threading.Tasks.Task.Delay(1000).Wait();
 }
 }
 }
}

The dotnet new command creates a new folder named app and generates a "Hello World" app. Enter the app
folder and run the command dotnet run . You'll see the following output:

The default template creates an app that prints to the terminal and then exits. For this tutorial, you'll use an app
that loops indefinitely. Open the Program.cs file in a text editor. It should currently look like the following code:

Replace the file with the following code that counts numbers every second:

Save the file and test the program again with dotnet run . Remember that this app runs indefinitely. Use the cancel
command CTRL+C to stop it. You'll see the following output:

> dotnet run
Counter: 1
Counter: 2
Counter: 3
Counter: 4
^C

NOTE

Publish .NET Core app

dotnet publish -c Release

> dir bin\Release\netcoreapp2.2\publish
 Directory of C:\docker-working\app\bin\Release\netcoreapp2.2\publish

04/05/2019 11:00 AM <DIR> .
04/05/2019 11:00 AM <DIR> ..
04/05/2019 11:00 AM 447 myapp.deps.json
04/05/2019 11:00 AM 4,608 myapp.dll
04/05/2019 11:00 AM 448 myapp.pdb
04/05/2019 11:00 AM 154 myapp.runtimeconfig.json

me@DESKTOP:/docker-working/app$ ls bin/Release/netcoreapp2.2/publish
myapp.deps.json myapp.dll myapp.pdb myapp.runtimeconfig.json

Create the Dockerfile

FROM mcr.microsoft.com/dotnet/core/runtime:2.2

If you pass a number on the command line to the app, it will only count up to that amount and then exit. Try it with
dotnet run -- 5 to count to five.

Any parameters after -- are not passed to the dotnet run command and instead are passed to your application.

Before you add your .NET Core app to the Docker image, publish it. You want to make sure that the container runs
the published version of the app when it's started.

From the working folder, enter the app folder with the example source code and run the following command:

This command compiles your app to the publish folder. The path to the publish folder from the working folder
should be .\app\bin\Release\netcoreapp2.2\publish\

Get a directory listing of the publish folder to verify that the myapp.dll was created. From the app folder, run one of
the following commands:

The Dockerfile file is used by the docker build command to create a container image. This file is a plaintext file
named Dockerfile that does not have an extension.

In your terminal, navigate up a directory to the working folder you created at the start. Create a file named
Dockerfile in your working folder and open it in a text editor. Add the following command as the first line of the file:

The FROM command tells Docker to pull down the image tagged 2.2 from the

docker-working
│ Dockerfile
│ global.json
│
└───app
 │ myapp.csproj
 │ Program.cs
 │
 ├───bin
 │ └───Release
 │ └───netcoreapp2.2
 │ └───publish
 │ myapp.deps.json
 │ myapp.dll
 │ myapp.pdb
 │ myapp.runtimeconfig.json
 │
 └───obj

docker build -t myimage -f Dockerfile .

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
mcr.microsoft.com/dotnet/core/runtime 2.2 d51bb4452469 2 days ago 314MB
myimage latest d51bb4452469 2 days ago 314MB

COPY app/bin/Release/netcoreapp2.2/publish/ app/

ENTRYPOINT ["dotnet", "app/myapp.dll"]

mcr.microsoft.com/dotnet/core/runtime repository. Make sure that you pull the .NET Core runtime that
matches the runtime targeted by your SDK. For example, the app created in the previous section used the .NET
Core 2.2 SDK and created an app that targeted .NET Core 2.2. So the base image referred to in the Dockerfile is
tagged with 2.2.

Save the Dockerfile file. The directory structure of the working folder should look like the following. Some of the
deeper-level files and folders have been cut to save space in the article:

From your terminal, run the following command:

Docker will process each line in the Dockerfile. The . in the docker build command tells Docker to use the
current folder to find a Dockerfile. This command builds the image and creates a local repository named myimage
that points to that image. After this command finishes, run docker images to see a list of images installed:

Notice that the two images share the same IMAGE ID value. The value is the same between both images because
the only command in the Dockerfile was to base the new image on an existing image. Let's add two commands to
the Dockerfile. Each command creates a new image layer with the final command representing the image the
myimage repository will point to.

The COPY command tells Docker to copy the specified folder on your computer to a folder in the container. In this
example, the publish folder is copied to a folder named app in the container.

The next command, ENTRYPOINT , tells Docker to configure the container to run as an executable. When the
container starts, the ENTRYPOINT command runs. When this command ends, the container will automatically stop.

From your terminal, run docker build -t myimage -f Dockerfile . and when that command finishes, run
docker images .

> docker build -t myimage -f Dockerfile .
Sending build context to Docker daemon 819.7kB
Step 1/3 : FROM mcr.microsoft.com/dotnet/core/runtime:2.2
 ---> d51bb4452469
Step 2/3 : COPY app/bin/Release/netcoreapp2.2/publish/ app/
 ---> a1e98ac62017
Step 3/3 : ENTRYPOINT ["dotnet", "app/myapp.dll"]
 ---> Running in f34da5c18e7c
Removing intermediate container f34da5c18e7c
 ---> ddcc6646461b
Successfully built ddcc6646461b
Successfully tagged myimage:latest

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
myimage latest ddcc6646461b 10 seconds ago 314MB
mcr.microsoft.com/dotnet/core/runtime 2.2 d51bb4452469 2 days ago 314MB

Create a container

> docker create myimage
0e8f3c2ca32ce773712a5cca38750f41259a4e54e04bdf0946087e230ad7066c

> docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
0e8f3c2ca32c myimage "dotnet app/myapp.dll" 4 seconds ago Created
boring_matsumoto

Manage the container

> docker start boring_matsumoto
boring_matsumoto

> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
0e8f3c2ca32c myimage "dotnet app/myapp.dll" 7 minutes ago Up 8 seconds
boring_matsumoto

Each command in the Dockerfile generated a layer and created an IMAGE ID . The final IMAGE ID (yours will be
different) is ddcc6646461b and next you'll create a container based on this image.

Now that you have an image that contains your app, you can create a container. You can create a container in two
ways. First, create a new container that is stopped.

The docker create command from above will create a container based on the myimage image. The output of that
command shows you the CONTAINER ID (yours will be different) of the created container. To see a list of all
containers, use the docker ps -a command:

Each container is assigned a random name that you can use to refer to that container instance. For example, the
container that was created automatically chose the name boring_matsumoto (yours will be different) and that
name can be used to start the container. You override the automatic name with a specific one by using the
docker create --name parameter.

The following example uses the docker start command to start the container, and then uses the docker ps

command to only show containers that are running:

> docker stop boring_matsumoto
boring_matsumoto

> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Connect to a container

> docker start boring_matsumoto
boring_matsumoto

> docker attach --sig-proxy=false boring_matsumoto
Counter: 7
Counter: 8
Counter: 9
^C

> docker attach --sig-proxy=false boring_matsumoto
Counter: 17
Counter: 18
Counter: 19
^C

Delete a container

> docker stop boring_matsumoto

> docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0e8f3c2ca32c myimage "dotnet app/myapp.dll" 19 minutes ago Exited
boring_matsumoto

> docker rm boring_matsumoto
boring_matsumoto

> docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Single run

Similarly, the docker stop command will stop the container. The following example uses the docker stop
command to stop the container, and then uses the docker ps command to show that no containers are running:

After a container is running, you can connect to it to see the output. Use the docker start and docker attach

commands to start the container and peek at the output stream. In this example, the CTRL + C command is used
to detach from the running container. This may actually end the process in the container, which will stop the
container. The --sig-proxy=false parameter ensures that CTRL + C won't stop the process in the container.

After you detach from the container, reattach to verify that it's still running and counting.

For the purposes of this article you don't want containers just hanging around doing nothing. Delete the container
you previously created. If the container is running, stop it.

The following example lists all containers. It then uses the docker rm command to delete the container, and then
checks a second time for any running containers.

Docker provides the docker run command to create and run the container as a single command. This command
eliminates the need to run docker create and then docker start . You can also set this command to automatically
delete the container when the container stops. For example, use docker run -it --rm to do two things, first,

> docker run -it --rm myimage
Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5
^C

> docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Change the ENTRYPOINT

Windows

> docker run -it --rm --entrypoint "cmd.exe" myimage

Microsoft Windows [Version 10.0.17763.379]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\>dir
 Volume in drive C has no label.
 Volume Serial Number is 3005-1E84

 Directory of C:\

04/09/2019 08:46 AM <DIR> app
03/07/2019 10:25 AM 5,510 License.txt
04/02/2019 01:35 PM <DIR> Program Files
04/09/2019 01:06 PM <DIR> Users
04/02/2019 01:35 PM <DIR> Windows
 1 File(s) 5,510 bytes
 4 Dir(s) 21,246,517,248 bytes free

C:\>^C

Linux

root@user:~# docker run -it --rm --entrypoint "bash" myimage
root@8515e897c893:/# ls app
myapp.deps.json myapp.dll myapp.pdb myapp.runtimeconfig.json
root@8515e897c893:/# exit
exit

Essential commands

automatically use the current terminal to connect to the container, and then when the container finishes, remove it:

With docker run -it , the CTRL + C command will stop process that is running in the container, which in turn,
stops the container. Since the --rm parameter was provided, the container is automatically deleted when the
process is stopped. Verify that it does not exist:

The docker run command also lets you modify the ENTRYPOINT command from the Dockerfile and run something
else, but only for that container. For example, use the following command to run bash or cmd.exe . Edit the
command as necessary.

In this example, ENTRYPOINT is changed to cmd.exe . CTRL+C is pressed to end the process and stop the container.

In this example, ENTRYPOINT is changed to bash . The quit command is run which ends the process and stop the
container.

Clean up resources

docker rmi myimage:latest
docker rmi mcr.microsoft.com/dotnet/core/runtime:2.2

NOTE

Next steps

Docker has many different commands that cover what you want to do with your container and images. These
Docker commands are essential to managing your containers:

docker build
docker run
docker ps
docker stop
docker rm
docker rmi
docker image

During this tutorial you created containers and images. If you want, delete these resources. Use the following
commands to

> docker ps -a

> docker stop CONTAINER_NAME

> docker rm CONTAINER_NAME

1. List all containers

2. Stop containers that are running. The CONTAINER_NAME represents the name automatically assigned to the
container.

3. Delete the container

Next, delete any images that you no longer want on your machine. Delete the image created by your Dockerfile
and then delete the .NET Core image the Dockerfile was based on. You can use the IMAGE ID or the
REPOSITORY:TAG formatted string.

Use the docker images command to see a list of images installed.

Image files can be large. Typically, you would remove temporary containers you created while testing and developing your
app. You usually keep the base images with the runtime installed if you plan on building other images based on that runtime.

Try the ASP.NET Core Microservice Tutorial.
Review the Azure services that support containers.
Read about Dockerfile commands.
Explore the Container Tools for Visual Studio

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/image/
https://dotnet.microsoft.com/learn/web/aspnet-microservice-tutorial/intro
https://azure.microsoft.com/overview/containers/
https://docs.docker.com/engine/reference/builder/
https://docs.microsoft.com/visualstudio/containers/overview

What diagnostic tools are available in .NET Core?
10/15/2019 • 2 minutes to read • Edit Online

Managed debuggers

Logging and tracing

Unit testing

.NET Core dotnet diagnostic Global Tools
dotnet-counters

dotnet-dump

dotnet-trace

Software doesn't always behave as you would expect, but .NET Core has tools and APIs that will help you diagnose
these issues quickly and effectively.

This article helps you find the various tools you need.

Managed debuggers allow you to interact with your program. Pausing, incrementally executing, examining, and
resuming gives you insight into the behavior of your code. A debugger is the first choice for diagnosing functional
problems that can be easily reproduced.

Logging and tracing are related techniques. They refer to instrumenting code to create log files. The files record the
details of what a program does. These details can be used to diagnose the most complex problems. When
combined with time stamps, these techniques are also valuable in performance investigations.

Unit testing is a key component of continuous integration and deployment of high-quality software. Unit tests are
designed to give you an early warning when you break something.

dotnet-counters is a performance monitoring tool for first-level health monitoring and performance investigation.
It observes performance counter values published via the EventCounter API. For example, you can quickly monitor
things like the CPU usage or the rate of exceptions being thrown in your .NET Core application.

The dotnet-dump tool is a way to collect and analyze Windows and Linux core dumps without a native debugger.

.NET Core includes what is called the EventPipe through which diagnostics data is exposed. The dotnet-trace tool
allows you to consume interesting profiling data from your app that can help in scenarios where you need to root
cause apps running slow.

https://github.com/dotnet/docs/blob/master/docs/core/diagnostics/index.md
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventcounter

.NET Core managed debuggers
9/12/2019 • 2 minutes to read • Edit Online

Visual Studio managed debugger

Visual Studio Code managed debugger

Debuggers allow programs to be paused or executed step-by-step. When paused, the current state of the process
can be viewed. By stepping through key sections, you gain understanding of your code and why it produces the
result that it does.

Microsoft provides debuggers for managed code in Visual Studio and Visual Studio Code.

Visual Studio is an integrated development environment with the most comprehensive debugger available.
Visual Studio is an excellent choice for developers working on Windows.

Tutorial - Debugging a .NET Core application on Windows with Visual Studio

While Visual Studio is a Windows application, it can still be used to debug Linux and macOS apps remotely.

Debugging a .NET Core application on Linux/OSX with Visual Studio

Debugging ASP.NET Core apps require slightly different instructions.

Debug ASP.NET Core apps in Visual Studio

Visual Studio Code is a lightweight cross-platform code editor. It uses the same .NET Core debugger
implementation as Visual Studio, but with a simplified user interface.

Tutorial - Debugging a .NET Core application with Visual Studio Code
Debugging in Visual Studio Code

https://github.com/dotnet/docs/blob/master/docs/core/diagnostics/managed-debuggers.md
https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio
https://docs.microsoft.com/visualstudio/debugger/how-to-enable-debugging-for-aspnet-applications#debug-aspnet-core-apps
https://code.visualstudio.com/docs/editor/debugging

.NET Core logging and tracing
9/12/2019 • 3 minutes to read • Edit Online

Reasons to use logging and tracing

.NET Core APIs
Print style APIs

Logging events

Logging and tracing are really two names for the same technique. The simple technique has been used since the
early days of computers. It simply involves instrumenting an application to write output to be consumed later.

This simple technique is surprisingly powerful. It can be used in situations where a debugger fails:

Issues occurring over long periods of time, can be difficult to debug with a traditional debugger. Logs allow for
detailed post-mortem review spanning long periods of time. In contrast, debuggers are constrained to real-time
analysis.
Multi-threaded applications and distributed applications are often difficult to debug. Attaching a debugger
tends to modify behaviors. Detailed logs can be analyzed as needed to understand complex systems.
Issues in distributed applications may arise from a complex interaction between many components and it may
not be reasonable to connect a debugger to every part of the system.
Many services shouldn't be stalled. Attaching a debugger often causes timeout failures.
Issues aren't always foreseen. Logging and tracing are designed for low overhead so that programs can always
be recording in case an issue occurs.

The System.Console, System.Diagnostics.Trace, and System.Diagnostics.Debug classes each provide similar print
style APIs convenient for logging.

The choice of which print style API to use is up to you. The key differences are:

System.Console

System.Diagnostics.Trace

System.Diagnostics.Debug

Always enabled and always writes to the console.
Useful for information that your customer may need to see in the release.
Because it's the simplest approach, it's often used for ad-hoc temporary debugging. This debug code is
often never checked in to source control.

Only enabled when TRACE is defined.
Writes to attached Listeners, by default the DefaultTraceListener.
Use this API when creating logs that will be enabled in most builds.

Only enabled when DEBUG is defined.
Writes to an attached debugger.
On *nix writes to stderr if COMPlus_DebugWriteToStdErr is set.
Use this API when creating logs that will be enabled only in debug builds.

The following APIs are more event oriented. Rather than logging simple strings they log event objects.

System.Diagnostics.Tracing.EventSource

https://github.com/dotnet/docs/blob/master/docs/core/diagnostics/logging-tracing.md
https://docs.microsoft.com/dotnet/api/system.console
https://docs.microsoft.com/dotnet/api/system.diagnostics.trace
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/dotnet/api/system.console
https://docs.microsoft.com/dotnet/api/system.diagnostics.trace
https://docs.microsoft.com/dotnet/api/system.diagnostics.trace.listeners#System_Diagnostics_Trace_Listeners
https://docs.microsoft.com/dotnet/api/system.diagnostics.defaulttracelistener
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource

ILogger and logging frameworks

Logging related references

Performance considerations

EventSource is the primary root .NET Core tracing API.
Available in all .NET Standard versions.
Only allows tracing serializable objects.
Writes to the attached event listeners.
.NET Core provides listeners for:

.NET Core's EventPipe on all platforms
Event Tracing for Windows (ETW)
LTTng tracing framework for Linux

System.Diagnostics.DiagnosticSource

Included in .NET Core and as a NuGet package for .NET Framework.
Allows in-process tracing of non-serializable objects.
Includes a bridge to allow selected fields of logged objects to be written to an EventSource.

System.Diagnostics.Activity

Provides a definitive way to identify log messages resulting from a specific activity or transaction. This
object can be used to correlate logs across different services.

System.Diagnostics.EventLog

Windows only.
Writes messages to the Windows Event Log.
System administrators expect fatal application error messages to appear in the Windows Event Log.

The low-level APIs may not be the right choice for your logging needs. You may want to consider a logging
framework.

The ILogger interface has been used to create a common logging interface where the loggers can be inserted
through dependency injection.

For instance, to allow you to make the best choice for your application ASP.NET offers support for a selection of
built-in and third-party frameworks:

ASP.NET built in logging providers
ASP.NET Third-party logging providers

How to: Compile Conditionally with Trace and Debug

How to: Add Trace Statements to Application Code

ASP.NET Logging provides an overview of the logging techniques it supports.

C# String Interpolation can simplify writing logging code.

The Exception.Message property is useful for logging exceptions.

The System.Diagnostics.StackTrace class can be useful to provide stack info in your logs.

String formatting can take noticeable CPU processing time.

In performance critical applications, it's recommended that you:

https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventlistener
https://docs.microsoft.com/windows/win32/etw/event-tracing-portal
https://lttng.org/
https://docs.microsoft.com/dotnet/api/system.diagnostics.diagnosticsource
https://www.nuget.org/packages/System.Diagnostics.DiagnosticSource
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource
https://docs.microsoft.com/dotnet/api/system.diagnostics.activity
https://docs.microsoft.com/dotnet/api/system.diagnostics.eventlog
https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger
https://docs.microsoft.com/aspnet/core/fundamentals/logging/#built-in-logging-providers
https://docs.microsoft.com/aspnet/core/fundamentals/logging/#third-party-logging-providers
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/how-to-compile-conditionally-with-trace-and-debug
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/how-to-add-trace-statements-to-application-code
https://docs.microsoft.com/aspnet/core/fundamentals/logging
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://docs.microsoft.com/dotnet/api/system.exception.message#System_Exception_Message
https://docs.microsoft.com/dotnet/api/system.diagnostics.stacktrace

Avoid lots of logging when no one is listening. Avoid constructing costly logging messages by checking if
logging is enabled first.
Only log what's useful.
Defer fancy formatting to the analysis stage.

dotnet-counters
10/15/2019 • 2 minutes to read • Edit Online

Install dotnet-counters

dotnet tool install --global dotnet-counters

Synopsis
dotnet-counters [-h|--help] [--version] <command>

Description

Options

Commands
COMMAND

dotnet-counters list

dotnet-counters monitor

dotnet-counters list

Synopsis

This article applies to: ✓ .NET Core 3.0 SDK and later versions

To install the latest release version of the dotnet-counters NuGet package, use the dotnet tool install command:

dotnet-counters is a performance monitoring tool for ad-hoc health monitoring and first-level performance
investigation. It can observe performance counter values that are published via the EventCounter API. For
example, you can quickly monitor things like the CPU usage or the rate of exceptions being thrown in your .NET
Core application to see if there's anything suspicious before diving into more serious performance investigation
using PerfView or dotnet-trace .

--version

Displays the version of the dotnet-counters utility.

-h|--help

Shows command-line help.

Displays a list of counter names and descriptions, grouped by provider.

https://github.com/dotnet/docs/blob/master/docs/core/diagnostics/dotnet-counters.md
https://www.nuget.org/packages/dotnet-counters
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventcounter

dotnet-counters list [-h|--help]

Example

> dotnet-counters list

 Showing well-known counters only. Specific processes may support additional counters.
 System.Runtime
 cpu-usage Amount of time the process has utilized the CPU (ms)
 working-set Amount of working set used by the process (MB)
 gc-heap-size Total heap size reported by the GC (MB)
 gen-0-gc-count Number of Gen 0 GCs / sec
 gen-1-gc-count Number of Gen 1 GCs / sec
 gen-2-gc-count Number of Gen 2 GCs / sec
 exception-count Number of Exceptions / sec

dotnet-counters monitor

Synopsis

dotnet-counters monitor [-h|--help] [-p|--process-id] [--refreshInterval] [counter_list]

Options

Examples

Displays periodically refreshing values of selected counters.

-p|--process-id <PID>

The ID of the process to be monitored.

--refresh-interval <SECONDS>

The number of seconds to delay between updating the displayed counters

counter_list <COUNTERS>

A space separated list of counters. Counters can be specified provider_name[:counter_name] . If the
provider_name is used without a qualifying counter_name , then all counters are shown. To discover provider

and counter names, use the dotnet-counters list command.

> dotnet-counters monitor --process-id 1902 --refresh-interval 3 System.Runtime

Press p to pause, r to resume, q to quit.
 System.Runtime:
 CPU Usage (%) 24
 Working Set (MB) 1982
 GC Heap Size (MB) 811
 Gen 0 GC / second 20
 Gen 1 GC / second 4
 Gen 2 GC / second 1
 Number of Exceptions / sec 4

Monitor all counters from System.Runtime at a refresh interval of 3 seconds:

Monitor just CPU usage and GC heap size from System.Runtime :

> dotnet-counters monitor --process-id 1902 System.Runtime[cpu-usage,gc-heap-size]

Press p to pause, r to resume, q to quit.
 System.Runtime:
 CPU Usage (%) 24
 GC Heap Size (MB) 811

> dotnet-counters monitor --process-id 1902 Samples-EventCounterDemos-Minimal

Press p to pause, r to resume, q to quit.
 request 100

Monitor EventCounter values from user-defined EventSource . For more information, see Tutorial: How to
measure performance for very frequent events using EventCounters.

https://github.com/dotnet/corefx/blob/master/src/System.Diagnostics.Tracing/documentation/EventCounterTutorial.md

Dump collection and analysis utility (dotnet-dump)
11/12/2019 • 5 minutes to read • Edit Online

NOTE

Installing dotnet-dump

dotnet tool install -g dotnet-dump

Synopsis
dotnet-dump [-h|--help] [--version] <command>

Description

Options

Commands
COMMAND

dotnet-dump collect

dotnet-dump analyze

dotnet-dump collect

This article applies to: ✓ .NET Core 3.0 SDK and later versions

dotnet-dump isn't supported on macOS.

To install the latest release version of the dotnet-dump NuGet package, use the dotnet tool install command:

The dotnet-dump global tool is a way to collect and analyze Windows and Linux dumps without any native
debugger involved like lldb on Linux. This tool is important on platforms like Alpine Linux where a fully working
lldb isn't available. The dotnet-dump tool allows you to run SOS commands to analyze crashes and the garbage

collector (GC), but it isn't a native debugger so things like displaying native stack frames aren't supported.

--version

Displays the version of the dotnet-counters utility.

-h|--help

Shows command-line help.

Captures a dump from a process.

https://github.com/dotnet/docs/blob/master/docs/core/diagnostics/dotnet-dump.md
https://www.nuget.org/packages/dotnet-dump

Synopsis

dotnet-dump collect [-h|--help] [-p|--process-id] [--type] [-o|--output] [--diag]

Options

dotnet-dump analyze

Synopsis

dotnet-dump analyze <dump_path> [-h|--help] [-c|--command]

Arguments

Options

Analyze SOS commands

-h|--help

Shows command-line help.

-p|--process-id <PID>

Specifies the process ID number to collect a memory dump from.

--type <Heap|Mini>

Specifies the dump type, which determines the kinds of information that are collected from the process.
There are two types:

Heap - A large and relatively comprehensive dump containing module lists, thread lists, all stacks,
exception information, handle information, and all memory except for mapped images.
Mini - A small dump containing module lists, thread lists, exception information, and all stacks.

If not specified, Heap is the default.

-o|--output <output_dump_path>

The full path and file name where the collected dump should be written.

If not specified:

Defaults to .\dump_YYYYMMDD_HHMMSS.dmp on Windows.
Defaults to ./core_YYYYMMDD_HHMMSS on Linux.

YYYYMMDD is Year/Month/Day and HHMMSS is Hour/Minute/Second.

--diag

Enables dump collection diagnostic logging.

Starts an interactive shell to explore a dump. The shell accepts various SOS commands.

<dump_path>

Specifies the path to the dump file to analyze.

-c|--command <debug_command>

Specifies the command to run in the shell on start.

COMMAND FUNCTION

soshelp Displays all available commands

soshelp|help <command> Displays the specified command.

exit|quit Exits interactive mode.

clrstack <arguments> Provides a stack trace of managed code only.

clrthreads <arguments> Lists the managed threads running.

dumpasync <arguments> Displays information about async state machines on the
garbage-collected heap.

dumpassembly <arguments> Displays details about an assembly.

dumpclass <arguments> Displays information about a EE class structure at the specified
address.

dumpdelegate <arguments> Displays information about a delegate.

dumpdomain <arguments> Displays information all the AppDomains and all assemblies
within the domains.

dumpheap <arguments> Displays info about the garbage-collected heap and collection
statistics about objects.

dumpil <arguments> Displays the Microsoft intermediate language (MSIL) that is
associated with a managed method.

dumplog <arguments> Writes the contents of an in-memory stress log to the
specified file.

dumpmd <arguments> Displays information about a MethodDesc structure at the
specified address.

dumpmodule <arguments> Displays information about a EE module structure at the
specified address.

dumpmt <arguments> Displays information about a method table at the specified
address.

dumpobj <arguments> Displays info about an object at the specified address.

dso|dumpstackobjects <arguments> Displays all managed objects found within the bounds of the
current stack.

eeheap <arguments> Displays info about process memory consumed by internal
runtime data structures.

finalizequeue <arguments> Displays all objects registered for finalization.

gcroot <arguments> Displays info about references (or roots) to an object at the
specified address.

gcwhere <arguments> Displays the location in the GC heap of the argument passed
in.

ip2md <arguments> Displays the MethodDesc structure at the specified address in
JIT code.

histclear <arguments> Releases any resources used by the family of hist*

commands.

histinit <arguments> Initializes the SOS structures from the stress log saved in the
debuggee.

histobj <arguments> Displays the garbage collection stress log relocations related
to <arguments> .

histobjfind <arguments> Displays all the log entries that reference an object at the
specified address.

histroot <arguments> Displays information related to both promotions and
relocations of the specified root.

lm|modules Displays the native modules in the process.

name2ee <arguments> Displays the MethodTable structure and EEClass structure for
the <argument> .

pe|printexception <arguments> Displays any object derived from the Exception class at the
address <argument> .

setsymbolserver <arguments> Enables the symbol server support

syncblk <arguments> Displays the SyncBlock holder info.

threads|setthread <threadid> Sets or displays the current thread ID for the SOS commands.

COMMAND FUNCTION

Using dotnet-dump

$ dotnet-dump collect --process-id 1902
Writing minidump to file ./core_20190226_135837
Written 98983936 bytes (24166 pages) to core file
Complete

The first step is to collect a dump. This step can be skipped if a core dump has already been generated. The
operating system or the .NET Core runtime's built-in dump generation feature can each create core dumps.

Now analyze the core dump with the analyze command:

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/xplat-minidump-generation.md#configurationpolicy

$ dotnet-dump analyze ./core_20190226_135850
Loading core dump: ./core_20190226_135850
Ready to process analysis commands. Type 'help' to list available commands or 'help [command]' to get detailed
help on a command.
Type 'quit' or 'exit' to exit the session.
>

> clrstack
OS Thread Id: 0x573d (0)
 Child SP IP Call Site
00007FFD28B42C58 00007fb22c1a8ed9 [HelperMethodFrame_PROTECTOBJ: 00007ffd28b42c58]
System.RuntimeMethodHandle.InvokeMethod(System.Object, System.Object[], System.Signature, Boolean, Boolean)
00007FFD28B42DD0 00007FB1B1334F67 System.Reflection.RuntimeMethodInfo.Invoke(System.Object,
System.Reflection.BindingFlags, System.Reflection.Binder, System.Object[], System.Globalization.CultureInfo)
[/root/coreclr/src/mscorlib/src/System/Reflection/RuntimeMethodInfo.cs @ 472]
00007FFD28B42E20 00007FB1B18D33ED SymbolTestApp.Program.Foo4(System.String)
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 54]
00007FFD28B42ED0 00007FB1B18D2FC4 SymbolTestApp.Program.Foo2(Int32, System.String)
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 29]
00007FFD28B42F00 00007FB1B18D2F5A SymbolTestApp.Program.Foo1(Int32, System.String)
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 24]
00007FFD28B42F30 00007FB1B18D168E SymbolTestApp.Program.Main(System.String[])
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 19]
00007FFD28B43210 00007fb22aa9cedf [GCFrame: 00007ffd28b43210]
00007FFD28B43610 00007fb22aa9cedf [GCFrame: 00007ffd28b43610]

> pe -lines
Exception object: 00007fb18c038590
Exception type: System.Reflection.TargetInvocationException
Message: Exception has been thrown by the target of an invocation.
InnerException: System.Exception, Use !PrintException 00007FB18C038368 to see more.
StackTrace (generated):
SP IP Function
00007FFD28B42DD0 0000000000000000
System.Private.CoreLib.dll!System.RuntimeMethodHandle.InvokeMethod(System.Object, System.Object[],
System.Signature, Boolean, Boolean)
00007FFD28B42DD0 00007FB1B1334F67
System.Private.CoreLib.dll!System.Reflection.RuntimeMethodInfo.Invoke(System.Object,
System.Reflection.BindingFlags, System.Reflection.Binder, System.Object[],
System.Globalization.CultureInfo)+0xa7 [/root/coreclr/src/mscorlib/src/System/Reflection/RuntimeMethodInfo.cs
@ 472]
00007FFD28B42E20 00007FB1B18D33ED SymbolTestApp.dll!SymbolTestApp.Program.Foo4(System.String)+0x15d
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 54]
00007FFD28B42ED0 00007FB1B18D2FC4 SymbolTestApp.dll!SymbolTestApp.Program.Foo2(Int32, System.String)+0x34
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 29]
00007FFD28B42F00 00007FB1B18D2F5A SymbolTestApp.dll!SymbolTestApp.Program.Foo1(Int32, System.String)+0x3a
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 24]
00007FFD28B42F30 00007FB1B18D168E SymbolTestApp.dll!SymbolTestApp.Program.Main(System.String[])+0x6e
[/home/mikem/builds/SymbolTestApp/SymbolTestApp/SymbolTestApp.cs @ 19]

StackTraceString: <none>
HResult: 80131604

Special instructions for Docker

This action brings up an interactive session that accepts commands like:

To see an unhandled exception that killed your app:

If you're running under Docker, dump collection requires SYS_PTRACE capabilities (--cap-add=SYS_PTRACE or
--privileged).

On Microsoft .NET Core SDK Linux Docker images, some dotnet-dump commands can throw the following
exception:

Unhandled exception: System.DllNotFoundException: Unable to load shared library 'libdl.so' or one of its
dependencies' exception.

To work around this problem, install the "libc6-dev" package.

Trace for performance analysis utility (dotnet-trace)
10/15/2019 • 4 minutes to read • Edit Online

Installing dotnet-trace

dotnet tool install --global dotnet-trace

Synopsis
dotnet-trace [-h, --help] [--version] <command>

Description

Options

Commands
COMMAND

dotnet-trace collect

dotnet-trace convert

dotnet-trace list-processes

dotnet-trace list-profiles

dotnet-trace collect

Synopsis

This article applies to: .NET Core 3.0 SDK and later versions

To install the latest release version of the dotnet-trace NuGet package, use the dotnet tool install command:

The dotnet-trace tool is a cross-platform CLI global tool that enables the collection of .NET Core traces of a
running process without any native profiler involved. It's built around the cross-platform EventPipe technology of
the .NET Core runtime. dotnet-trace delivers the same experience on Windows, Linux, or macOS.

--version

Display the version of the dotnet-counters utility.

-h|--help

Show command-line help.

Collects a diagnostic trace from a running process.

https://github.com/dotnet/docs/blob/master/docs/core/diagnostics/dotnet-trace.md
https://www.nuget.org/packages/dotnet-trace

dotnet-trace collect [-h|--help] [-p|--process-id] [--buffersize <size>] [-o|--output]
 [--providers] [--profile <profile-name>] [--format]

Options

dotnet-trace convert

Synopsis

dotnet-trace convert [<input-filename>] [-h|--help] [--format] [-o|--output]

Arguments

Options

-p|--process-id <PID>

The process to collect the trace from.

--buffersize <size>

Sets the size of the in-memory circular buffer in megabytes. Default 256 MB.

-o|--output <trace-file-path>

The output path for the collected trace data. If not specified it defaults to trace.nettrace .

--providers <list-of-comma-separated-providers>

A comma-separated list of EventPipe providers to be enabled. These providers supplement any providers
implied by --profile <profile-name> . If there's any inconsistency for a particular provider, the configuration
here takes precedence over the implicit configuration from the profile.

This list of providers is in the form:

Provider[,Provider]

Provider is in the form: KnownProviderName[:Flags[:Level][:KeyValueArgs]] .
KeyValueArgs is in the form: [key1=value1][;key2=value2] .

--profile <profile-name>

A named pre-defined set of provider configurations that allows common tracing scenarios to be specified
succinctly.

--format <NetTrace|Speedscope>

Sets the output format for the trace file conversion.

Converts nettrace traces to alternate formats for use with alternate trace analysis tools.

<input-filename>

Input trace file to be converted. Defaults to trace.nettrace.

--format <NetTrace|Speedscope>

Sets the output format for the trace file conversion.

-o|--output <output-filename>

Output filename. Extension of target format will be added.

dotnet-trace list-processes

Synopsis

dotnet-trace list-processes [-h|--help]

dotnet-trace list-profiles

Synopsis

dotnet-trace list-profiles [-h|--help]

Collect a trace with dotnet-trace

> dotnet-trace collect --process-id <PID>

Press <Enter> to exit...
Connecting to process: <Full-Path-To-Process-Being-Profiled>/dotnet.exe
Collecting to file: <Full-Path-To-Trace>/trace.nettrace
 Session Id: <SessionId>
 Recording trace 721.025 (KB)

Viewing the trace captured from dotnet-trace

Lists dotnet processes that can be traced.

Lists pre-built tracing profiles with a description of what providers and filters are in each profile.

To collect traces using dotnet-trace , you'll need to first, find out the process identifier (PID) of the .NET
Core application to collect traces from.

On Windows, there are options such as using the task manager or the tasklist command.
On Linux, the trivial option could be using ps command.

You may also use the dotnet-trace list-processes command to find out what .NET Core processes are running,
along with their PIDs.

Then, run the following command:

Finally, stop collection by pressing the <Enter> key, and dotnet-trace will finish logging events to
trace.nettrace file.

On Windows, .nettrace files can be viewed on PerfView for analysis, just like traces collected with ETW or LTTng.
For traces collected on Linux, you can move the trace to a Windows machine to be viewed on PerfView.

You may also view the trace on a Linux machine by changing the output format of dotnet-trace to speedscope .
You can change the output file format using the -f|--format option - -f speedscope will make dotnet-trace to
produce a speedscope file. You can currently choose between nettrace (the default option) and speedscope .
Speedscope files can be opened at https://www.speedscope.app.

https://github.com/microsoft/perfview
https://www.speedscope.app

NOTE

Using dotnet-trace to collect counter values over time

dotnet-trace collect --process-id <PID> --providers System.Runtime:0:1:EventCounterIntervalSec=1

dotnet-trace collect --process-id <PID> --providers System.Runtime:0:1:EventCounterIntervalSec=1,Microsoft-
Windows-DotNETRuntime:0:1,Microsoft-DotNETCore-SampleProfiler:0:1

.NET Providers

PROVIDER NAME INFORMATION

Microsoft-Windows-DotNETRuntime The Runtime Provider
CLR Runtime Keywords

Microsoft-Windows-DotNETRuntimeRundown The Rundown Provider
CLR Rundown Keywords

Microsoft-DotNETCore-SampleProfiler Enables the sample profiler.

The .NET Core runtime generates traces in the nettrace format, and they're converted to speedscope (if specified) after the
trace is completed. Since some conversions may result in loss of data, the original nettrace file is preserved next to the
converted file.

If you're trying to use EventCounter for basic health monitoring in performance-sensitive settings like production
environments and you want to collect traces instead of watching them in real time, you can do that with
dotnet-trace as well.

For example, if you want to collect runtime performance counter values, you can use the following command:

This command tells the runtime counters to be reported once every second for lightweight health monitoring.
Replacing EventCounterIntervalSec=1 with a higher value (for example, 60) allows you to collect a smaller trace
with less granularity in the counter data.

If you want to disable runtime events to reduce the overhead (and trace size) even further, you can use the
following command to disable runtime events and managed stack profiler.

The .NET Core runtime supports the following .NET providers. .NET Core uses the same keywords to enable both
Event Tracing for Windows (ETW) and EventPipe traces.

https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-keywords-and-levels
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-keywords-and-levels

Unit testing in .NET Core and .NET Standard
10/17/2019 • 2 minutes to read • Edit Online

What are unit tests?

NOTE

Next steps

.NET Core makes it easy to create unit tests. This article introduces unit tests and illustrates how they differ from
other kinds of tests. The linked resources near the bottom of the page show you how to add a test project to your
solution. After you set up your test project, you will be able to run your unit tests using the command line or Visual
Studio.

If you're testing an ASP.NET Core project, see Integration tests in ASP.NET Core.

.NET Core 2.0 and later supports .NET Standard 2.0, and we will use its libraries to demonstrate unit tests.

You are able to use built-in .NET Core 2.0 and later unit test project templates for C#, F# and Visual Basic as a
starting point for your personal project.

Having automated tests is a great way to ensure a software application does what its authors intend it to do. There
are multiple types of tests for software applications. These include integration tests, web tests, load tests, and
others. Unit tests test individual software components and methods. Unit tests should only test code within the
developer’s control. They should not test infrastructure concerns. Infrastructure concerns include databases, file
systems, and network resources.

Also, keep in mind there are best practices for writing tests. For example, Test Driven Development (TDD) is when
a unit test is written before the code it is meant to check. TDD is like creating an outline for a book before we write
it. It is meant to help developers write simpler, more readable, and efficient code.

The ASP.NET team follows these conventions to help developers come up with good names for test classes and methods.

Try not to introduce dependencies on infrastructure when writing unit tests. These make the tests slow and brittle,
and should be reserved for integration tests. You can avoid these dependencies in your application by following the
Explicit Dependencies Principle and using Dependency Injection. You can also keep your unit tests in a separate
project from your integration tests. This ensures your unit test project doesn’t have references to or dependencies
on infrastructure packages.

More information on unit testing in .NET Core projects:

.NET Core unit test projects are supported for:

C#
F#
Visual Basic

You can also choose between:

xUnit
NUnit
MSTest

https://github.com/dotnet/docs/blob/master/docs/core/testing/index.md
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://deviq.com/test-driven-development/
https://github.com/aspnet/Home/wiki/Engineering-guidelines#unit-tests-and-functional-tests
https://deviq.com/explicit-dependencies-principle/
https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/dotnet/csharp/index
https://docs.microsoft.com/en-us/dotnet/fsharp/index
https://docs.microsoft.com/en-us/dotnet/visual-basic/index
https://xunit.github.io
https://nunit.org
https://github.com/Microsoft/testfx-docs

You can learn more in the following walkthroughs:

Create unit tests using xUnit and C# with the .NET Core CLI.
Create unit tests using NUnit and C# with the .NET Core CLI.
Create unit tests using MSTest and C# with the .NET Core CLI.
Create unit tests using xUnit and F# with the .NET Core CLI.
Create unit tests using NUnit and F# with the .NET Core CLI.
Create unit tests using MSTest and F# with the .NET Core CLI.
Create unit tests using xUnit and Visual Basic with the .NET Core CLI.
Create unit tests using NUnit and Visual Basic with the .NET Core CLI.
Create unit tests using MSTest and Visual Basic with the .NET Core CLI.

You can learn more in the following articles:

Visual Studio Enterprise offers great testing tools for .NET Core. Check out Live Unit Testing or code coverage
to learn more.
For more information on how to run selective unit tests, see Running selective unit tests, or including and
excluding tests with Visual Studio.
How to use xUnit with .NET Core and Visual Studio.

https://docs.microsoft.com/visualstudio/test/live-unit-testing
https://github.com/Microsoft/vstest-docs/blob/master/docs/analyze.md#working-with-code-coverage
https://docs.microsoft.com/visualstudio/test/live-unit-testing#include-and-exclude-test-projects-and-test-methods
https://xunit.github.io/docs/getting-started-dotnet-core.html

Unit testing best practices with .NET Core and .NET
Standard
9/12/2019 • 14 minutes to read • Edit Online

Why unit test?
Less time performing functional tests

Protection against regression

Executable documentation

Less coupled code

Characteristics of a good unit test

There are numerous benefits to writing unit tests; they help with regression, provide documentation, and facilitate
good design. However, hard to read and brittle unit tests can wreak havoc on your code base. This article describes
some best practices regarding unit test design for your .NET Core and .NET Standard projects.

In this guide, you'll learn some best practices when writing unit tests to keep your tests resilient and easy to
understand.

By John Reese with special thanks to Roy Osherove

Functional tests are expensive. They typically involve opening up the application and performing a series of steps
that you (or someone else), must follow in order to validate the expected behavior. These steps may not always be
known to the tester, which means they will have to reach out to someone more knowledgeable in the area in order
to carry out the test. Testing itself could take seconds for trivial changes, or minutes for larger changes. Lastly, this
process must be repeated for every change that you make in the system.

Unit tests, on the other hand, take milliseconds, can be run at the press of a button and do not necessarily require
any knowledge of the system at large. Whether or not the test passes or fails is up to the test runner, not the
individual.

Regression defects are defects that are introduced when a change is made to the application. It is common for
testers to not only test their new feature but also features that existed beforehand in order to verify that previously
implemented features still function as expected.

With unit testing, it's possible to rerun your entire suite of tests after every build or even after you change a line of
code. Giving you confidence that your new code does not break existing functionality.

It may not always be obvious what a particular method does or how it behaves given a certain input. You may ask
yourself: How does this method behave if I pass it a blank string? Null?

When you have a suite of well-named unit tests, each test should be able to clearly explain the expected output for
a given input. In addition, it should be able to verify that it actually works.

When code is tightly coupled, it can be difficult to unit test. Without creating unit tests for the code that you're
writing, coupling may be less apparent.

Writing tests for your code will naturally decouple your code, because it would be more difficult to test otherwise.

Fast. It is not uncommon for mature projects to have thousands of unit tests. Unit tests should take very little
time to run. Milliseconds.

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-best-practices.md
https://reese.dev
https://osherove.com/

Let's speak the same language

var mockOrder = new MockOrder();
var purchase = new Purchase(mockOrder);

purchase.ValidateOrders();

Assert.True(purchase.CanBeShipped);

var stubOrder = new FakeOrder();
var purchase = new Purchase(stubOrder);

purchase.ValidateOrders();

Assert.True(purchase.CanBeShipped);

Isolated. Unit tests are standalone, can be run in isolation, and have no dependencies on any outside factors
such as a file system or database.
Repeatable. Running a unit test should be consistent with its results, that is, it always returns the same result if
you do not change anything in between runs.
Self-Checking. The test should be able to automatically detect if it passed or failed without any human
interaction.
Timely. A unit test should not take a disproportionately long time to write compared to the code being tested. If
you find testing the code taking a large amount of time compared to writing the code, consider a design that is
more testable.

The term mock is unfortunately very misused when talking about testing. The following defines the most common
types of fakes when writing unit tests:

Fake - A fake is a generic term which can be used to describe either a stub or a mock object. Whether it is a stub or
a mock depends on the context in which it's used. So in other words, a fake can be a stub or a mock.

Mock - A mock object is a fake object in the system that decides whether or not a unit test has passed or failed. A
mock starts out as a Fake until it is asserted against.

Stub - A stub is a controllable replacement for an existing dependency (or collaborator) in the system. By using a
stub, you can test your code without dealing with the dependency directly. By default, a fake starts out as a stub.

Consider the following code snippet:

This would be an example of stub being referred to as a mock. In this case, it is a stub. You're just passing in the
Order as a means to be able to instantiate Purchase (the system under test). The name MockOrder is also very
misleading because again, the order is not a mock.

A better approach would be

By renaming the class to FakeOrder , you've made the class a lot more generic, the class can be used as a mock or a
stub. Whichever is better for the test case. In the above example, FakeOrder is used as a stub. You're not using the
FakeOrder in any shape or form during the assert. FakeOrder was just passed into the Purchase class to satisfy the

requirements of the constructor.

To use it as a Mock, you could do something like this

var mockOrder = new FakeOrder();
var purchase = new Purchase(mockOrder);

purchase.ValidateOrders();

Assert.True(mockOrder.Validated);

IMPORTANT

Best practices
Naming your tests

Why?

Bad:

[Fact]
public void Test_Single()
{
 var stringCalculator = new StringCalculator();

 var actual = stringCalculator.Add("0");

 Assert.Equal(0, actual);
}

Better :

[Fact]
public void Add_SingleNumber_ReturnsSameNumber()
{
 var stringCalculator = new StringCalculator();

 var actual = stringCalculator.Add("0");

 Assert.Equal(0, actual);
}

In this case, you are checking a property on the Fake (asserting against it), so in the above code snippet, the
mockOrder is a Mock.

It's important to get this terminology correct. If you call your stubs "mocks", other developers are going to make false
assumptions about your intent.

The main thing to remember about mocks versus stubs is that mocks are just like stubs, but you assert against the
mock object, whereas you do not assert against a stub.

The name of your test should consist of three parts:

The name of the method being tested.
The scenario under which it's being tested.
The expected behavior when the scenario is invoked.

Naming standards are important because they explicitly express the intent of the test.

Tests are more than just making sure your code works, they also provide documentation. Just by looking at the
suite of unit tests, you should be able to infer the behavior of your code without even looking at the code itself.
Additionally, when tests fail, you can see exactly which scenarios do not meet your expectations.

Arranging your tests

Why?

Bad:

[Fact]
public void Add_EmptyString_ReturnsZero()
{
 // Arrange
 var stringCalculator = new StringCalculator();

 // Assert
 Assert.Equal(0, stringCalculator.Add(""));
}

Better :

[Fact]
public void Add_EmptyString_ReturnsZero()
{
 // Arrange
 var stringCalculator = new StringCalculator();

 // Act
 var actual = stringCalculator.Add("");

 // Assert
 Assert.Equal(0, actual);
}

Write minimally passing tests

Why?

Bad:

Arrange, Act, Assert is a common pattern when unit testing. As the name implies, it consists of three main
actions:

Arrange your objects, creating and setting them up as necessary.
Act on an object.
Assert that something is as expected.

Clearly separates what is being tested from the arrange and assert steps.
Less chance to intermix assertions with "Act" code.

Readability is one of the most important aspects when writing a test. Separating each of these actions within the
test clearly highlight the dependencies required to call your code, how your code is being called, and what you are
trying to assert. While it may be possible to combine some steps and reduce the size of your test, the primary goal
is to make the test as readable as possible.

The input to be used in a unit test should be the simplest possible in order to verify the behavior that you are
currently testing.

Tests become more resilient to future changes in the codebase.
Closer to testing behavior over implementation.

Tests that include more information than required to pass the test have a higher chance of introducing errors into
the test and can make the intent of the test less clear. When writing tests you want to focus on the behavior. Setting
extra properties on models or using non-zero values when not required, only detracts from what you are trying to
prove.

[Fact]
public void Add_SingleNumber_ReturnsSameNumber()
{
 var stringCalculator = new StringCalculator();

 var actual = stringCalculator.Add("42");

 Assert.Equal(42, actual);
}

Better :

[Fact]
public void Add_SingleNumber_ReturnsSameNumber()
{
 var stringCalculator = new StringCalculator();

 var actual = stringCalculator.Add("0");

 Assert.Equal(0, actual);
}

Avoid magic strings

Why?

TIP

Bad:

[Fact]
public void Add_BigNumber_ThrowsException()
{
 var stringCalculator = new StringCalculator();

 Action actual = () => stringCalculator.Add("1001");

 Assert.Throws<OverflowException>(actual);
}

Better :

Naming variables in unit tests is as important, if not more important, than naming variables in production code.
Unit tests should not contain magic strings.

Prevents the need for the reader of the test to inspect the production code in order to figure out what makes the
value special.
Explicitly shows what you're trying to prove rather than trying to accomplish.

Magic strings can cause confusion to the reader of your tests. If a string looks out of the ordinary, they may wonder
why a certain value was chosen for a parameter or return value. This may lead them to take a closer look at the
implementation details, rather than focus on the test.

When writing tests, you should aim to express as much intent as possible. In the case of magic strings, a good approach is to
assign these values to constants.

[Fact]
void Add_MaximumSumResult_ThrowsOverflowException()
{
 var stringCalculator = new StringCalculator();
 const string MAXIMUM_RESULT = "1001";

 Action actual = () => stringCalculator.Add(MAXIMUM_RESULT);

 Assert.Throws<OverflowException>(actual);
}

Avoid logic in tests

Why?

TIP

Bad:

[Fact]
public void Add_MultipleNumbers_ReturnsCorrectResults()
{
 var stringCalculator = new StringCalculator();
 var expected = 0;
 var testCases = new[]
 {
 "0,0,0",
 "0,1,2",
 "1,2,3"
 };

 foreach (var test in testCases)
 {
 Assert.Equal(expected, stringCalculator.Add(test));
 expected += 3;
 }

}

Better :

When writing your unit tests avoid manual string concatenation and logical conditions such as if , while , for ,
switch , etc.

Less chance to introduce a bug inside of your tests.
Focus on the end result, rather than implementation details.

When you introduce logic into your test suite, the chance of introducing a bug into it increases dramatically. The
last place that you want to find a bug is within your test suite. You should have a high level of confidence that your
tests work, otherwise, you will not trust them. Tests that you do not trust, do not provide any value. When a test
fails, you want to have a sense that something is actually wrong with your code and that it cannot be ignored.

If logic in your test seems unavoidable, consider splitting the test up into two or more different tests.

[Theory]
[InlineData("0,0,0", 0)]
[InlineData("0,1,2", 3)]
[InlineData("1,2,3", 6)]
public void Add_MultipleNumbers_ReturnsSumOfNumbers(string input, int expected)
{
 var stringCalculator = new StringCalculator();

 var actual = stringCalculator.Add(input);

 Assert.Equal(expected, actual);
}

Prefer helper methods to setup and teardown

Why?

NOTE

Bad:

private readonly StringCalculator stringCalculator;
public StringCalculatorTests()
{
 stringCalculator = new StringCalculator();
}

// more tests...

[Fact]
public void Add_TwoNumbers_ReturnsSumOfNumbers()
{
 var result = stringCalculator.Add("0,1");

 Assert.Equal(1, result);
}

Better :

If you require a similar object or state for your tests, prefer a helper method than leveraging Setup and Teardown
attributes if they exist.

Less confusion when reading the tests since all of the code is visible from within each test.
Less chance of setting up too much or too little for the given test.
Less chance of sharing state between tests which creates unwanted dependencies between them.

In unit testing frameworks, Setup is called before each and every unit test within your test suite. While some may
see this as a useful tool, it generally ends up leading to bloated and hard to read tests. Each test will generally have
different requirements in order to get the test up and running. Unfortunately, Setup forces you to use the exact
same requirements for each test.

xUnit has removed both SetUp and TearDown as of version 2.x

[Fact]
public void Add_TwoNumbers_ReturnsSumOfNumbers()
{
 var stringCalculator = CreateDefaultStringCalculator();

 var actual = stringCalculator.Add("0,1");

 Assert.Equal(1, actual);
}

// more tests...

private StringCalculator CreateDefaultStringCalculator()
{
 return new StringCalculator();
}

Avoid multiple asserts

Why?

NOTE

Bad:

[Fact]
public void Add_EdgeCases_ThrowsArgumentExceptions()
{
 Assert.Throws<ArgumentException>(() => stringCalculator.Add(null));
 Assert.Throws<ArgumentException>(() => stringCalculator.Add("a"));
}

Better :

When writing your tests, try to only include one Assert per test. Common approaches to using only one assert
include:

Create a separate test for each assert.
Use parameterized tests.

If one Assert fails, the subsequent Asserts will not be evaluated.
Ensures you are not asserting multiple cases in your tests.
Gives you the entire picture as to why your tests are failing.

When introducing multiple asserts into a test case, it is not guaranteed that all of the asserts will be executed. In
most unit testing frameworks, once an assertion fails in a unit test, the proceeding tests are automatically
considered to be failing. This can be confusing as functionality that is actually working, will be shown as failing.

A common exception to this rule is when asserting against an object. In this case, it is generally acceptable to have multiple
asserts against each property to ensure the object is in the state that you expect it to be in.

[Theory]
[InlineData(null)]
[InlineData("a")]
public void Add_InputNullOrAlphabetic_ThrowsArgumentException(string input)
{
 var stringCalculator = new StringCalculator();

 Action actual = () => stringCalculator.Add(input);

 Assert.Throws<ArgumentException>(actual);
}

Validate private methods by unit testing public methods

public string ParseLogLine(string input)
{
 var sanitizedInput = TrimInput(input);
 return sanitizedInput;
}

private string TrimInput(string input)
{
 return input.Trim();
}

public void ParseLogLine_ByDefault_ReturnsTrimmedResult()
{
 var parser = new Parser();

 var result = parser.ParseLogLine(" a ");

 Assert.Equals("a", result);
}

Stub static references

In most cases, there should not be a need to test a private method. Private methods are an implementation detail.
You can think of it this way: private methods never exist in isolation. At some point, there is going to be a public
facing method that calls the private method as part of its implementation. What you should care about is the end
result of the public method that calls into the private one.

Consider the following case

Your first reaction may be to start writing a test for TrimInput because you want to make sure that the method is
working as expected. However, it is entirely possible that ParseLogLine manipulates sanitizedInput in such a way
that you do not expect, rendering a test against TrimInput useless.

The real test should be done against the public facing method ParseLogLine because that is what you should
ultimately care about.

With this viewpoint, if you see a private method, find the public method and write your tests against that method.
Just because a private method returns the expected result, does not mean the system that eventually calls the
private method uses the result correctly.

One of the principles of a unit test is that it must have full control of the system under test. This can be problematic
when production code includes calls to static references (e.g. DateTime.Now). Consider the following code

public int GetDiscountedPrice(int price)
{
 if(DateTime.Now.DayOfWeek == DayOfWeek.Tuesday)
 {
 return price / 2;
 }
 else
 {
 return price;
 }
}

public void GetDiscountedPrice_ByDefault_ReturnsFullPrice()
{
 var priceCalculator = new PriceCalculator();

 var actual = priceCalculator.GetDiscountedPrice(2);

 Assert.Equals(2, actual)
}

public void GetDiscountedPrice_OnTuesday_ReturnsHalfPrice()
{
 var priceCalculator = new PriceCalculator();

 var actual = priceCalculator.GetDiscountedPrice(2);

 Assert.Equals(1, actual);
}

public interface IDateTimeProvider
{
 DayOfWeek DayOfWeek();
}

public int GetDiscountedPrice(int price, IDateTimeProvider dateTimeProvider)
{
 if(dateTimeProvider.DayOfWeek() == DayOfWeek.Tuesday)
 {
 return price / 2;
 }
 else
 {
 return price;
 }
}

How can this code possibly be unit tested? You may try an approach such as

Unfortunately, you will quickly realize that there are a couple problems with your tests.

If the test suite is run on a Tuesday, the second test will pass, but the first test will fail.
If the test suite is run on any other day, the first test will pass, but the second test will fail.

To solve these problems, you'll need to introduce a seam into your production code. One approach is to wrap the
code that you need to control in an interface and have the production code depend on that interface.

Your test suite now becomes

public void GetDiscountedPrice_ByDefault_ReturnsFullPrice()
{
 var priceCalculator = new PriceCalculator();
 var dateTimeProviderStub = new Mock<IDateTimeProvider>();
 dateTimeProviderStub.Setup(dtp => dtp.DayOfWeek()).Returns(DayOfWeek.Monday);

 var actual = priceCalculator.GetDiscountedPrice(2, dateTimeProviderStub);

 Assert.Equals(2, actual);
}

public void GetDiscountedPrice_OnTuesday_ReturnsHalfPrice()
{
 var priceCalculator = new PriceCalculator();
 var dateTimeProviderStub = new Mock<IDateTimeProvider>();
 dateTimeProviderStub.Setup(dtp => dtp.DayOfWeek()).Returns(DayOfWeek.Tuesday);

 var actual = priceCalculator.GetDiscountedPrice(2, dateTimeProviderStub);

 Assert.Equals(1, actual);
}

Now the test suite has full control over DateTime.Now and can stub any value when calling into the method.

Unit testing C# in .NET Core using dotnet test and
xUnit
9/19/2019 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first.");
 }
 }
}

dotnet sln add ./PrimeService/PrimeService.csproj

Creating the test project

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

Open a shell window. Create a directory called unit-testing-using-dotnet-test to hold the solution. Inside this new
directory, run dotnet new sln to create a new solution. Having a solution makes it easier to manage both the class
library and the unit test project. Inside the solution directory, create a PrimeService directory. The directory and
file structure thus far should be as follows:

Make PrimeService the current directory and run dotnet new classlib to create the source project. Rename
Class1.cs to PrimeService.cs. You first create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-using-dotnet-test directory.

Run the dotnet sln command to add the class library project to the solution:

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-with-dotnet-test.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-using-dotnet-test/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.csproj

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.csproj

dotnet sln add ./PrimeService.Tests/PrimeService.Tests.csproj

Creating the first test

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new xunit . This
command creates a test project that uses xUnit as the test library. The generated template configures the test
runner in the PrimeServiceTests.csproj file similar to the following code:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added xUnit
and the xUnit runner. Now, add the PrimeService class library as another dependency to the project. Use the
dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

The following shows the final solution layout:

To add the test project to the solution, run the dotnet sln command in the unit-testing-using-dotnet-test directory:

You write one failing test, make it pass, then repeat the process. Remove UnitTest1.cs from the PrimeService.Tests
directory and create a new C# file named PrimeService_IsPrimeShould.cs. Add the following code:

https://xunit.github.io/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-dotnet-test/PrimeService.Tests/PrimeService.Tests.csproj

using Xunit;
using Prime.Services;

namespace Prime.UnitTests.Services
{
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;

 public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }

 [Fact]
 public void IsPrime_InputIs1_ReturnFalse()
 {
 var result = _primeService.IsPrime(1);

 Assert.False(result, "1 should not be prime");
 }
 }
}

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first.");
}

Adding more features

The [Fact] attribute indicates a test method that is run by the test runner. From the PrimeService.Tests folder,
execute dotnet test to build the tests and the class library and then run the tests. The xUnit test runner contains
the program entry point to run your tests. dotnet test starts the test runner using the unit test project you've
created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the
PrimeService class that works. Replace the existing IsPrime method implementation with the following code:

In the PrimeService.Tests directory, run dotnet test again. The dotnet test command runs a build for the
PrimeService project and then for the PrimeService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime
numbers: 0, -1. You could add those cases as new tests with the [Fact] attribute, but that quickly becomes
tedious. There are other xUnit attributes that enable you to write a suite of similar tests:

[Theory] represents a suite of tests that execute the same code but have different input arguments.

[InlineData] attribute specifies values for those inputs.

Instead of creating new tests, apply these two attributes, [Theory] and [InlineData] , to create a single theory in
the PrimeService_IsPrimeShould.cs file. The theory is a method that tests several values less than two, which is the
lowest prime number:

[Theory]
[InlineData(-1)]
[InlineData(0)]
[InlineData(1)]
public void IsPrime_ValuesLessThan2_ReturnFalse(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.False(result, $"{value} should not be prime");
}

if (candidate < 2)

Additional resources

Run dotnet test again, and two of these tests should fail. To make all of the tests pass, change the if clause at
the beginning of the IsPrime method in the PrimeService.cs file:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished
version of the tests and the complete implementation of the library.

xUnit.net official site
Testing controller logic in ASP.NET Core

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-dotnet-test/PrimeService.Tests/PrimeService_IsPrimeShould.cs
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-dotnet-test/PrimeService/PrimeService.cs
https://xunit.github.io
https://docs.microsoft.com/aspnet/core/mvc/controllers/testing

Unit testing C# with NUnit and .NET Core
9/19/2019 • 4 minutes to read • Edit Online

Prerequisites

Creating the source project

dotnet new sln

/unit-testing-using-nunit
 unit-testing-using-nunit.sln
 /PrimeService

dotnet new classlib

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first.");
 }
 }
}

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

.NET Core 2.1 SDK or later versions.
A text editor or code editor of your choice.

Open a shell window. Create a directory called unit-testing-using-nunit to hold the solution. Inside this new
directory, run the following command to create a new solution file for the class library and the test project:

Next, create a PrimeService directory. The following outline shows the directory and file structure so far:

Make PrimeService the current directory and run the following command to create the source project:

Rename Class1.cs to PrimeService.cs. You create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-using-nunit directory. Run the following command to add the class
library project to the solution:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-with-nunit.md
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites
https://dotnet.microsoft.com/download

dotnet sln add PrimeService/PrimeService.csproj

Creating the test project

/unit-testing-using-nunit
 unit-testing-using-nunit.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests

dotnet new nunit

<ItemGroup>
 <PackageReference Include="nunit" Version="3.12.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.15.1" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.4.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.csproj

/unit-testing-using-nunit
 unit-testing-using-nunit.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests
 Test Source Files
 PrimeService.Tests.csproj

dotnet sln add ./PrimeService.Tests/PrimeService.Tests.csproj

Creating the first test

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using the following
command:

The dotnet new command creates a test project that uses NUnit as the test library. The generated template
configures the test runner in the PrimeService.Tests.csproj file:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added the
Microsoft test SDK, the NUnit test framework, and the NUnit test adapter. Now, add the PrimeService class
library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

The following outline shows the final solution layout:

Execute the following command in the unit-testing-using-nunit directory:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/PrimeService.Tests/PrimeService.Tests.csproj

using NUnit.Framework;
using Prime.Services;

namespace Prime.UnitTests.Services
{
 [TestFixture]
 public class PrimeService_IsPrimeShould
 {
 [Test]
 public void IsPrime_InputIs1_ReturnFalse()
 {
 PrimeService primeService = CreatePrimeService();
 var result = primeService.IsPrime(1);

 Assert.IsFalse(result, "1 should not be prime");
 }

 /*
 More tests
 */

 private PrimeService CreatePrimeService()
 {
 return new PrimeService();
 }
 }
}

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first.");
}

Adding more features

You write one failing test, make it pass, then repeat the process. In the PrimeService.Tests directory, rename the
UnitTest1.cs file to PrimeService_IsPrimeShould.cs and replace its entire contents with the following code:

The [TestFixture] attribute denotes a class that contains unit tests. The [Test] attribute indicates a method is a
test method.

Save this file and execute dotnet test to build the tests and the class library and then run the tests. The NUnit test
runner contains the program entry point to run your tests. dotnet test starts the test runner using the unit test
project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the
PrimeService class that works:

In the unit-testing-using-nunit directory, run dotnet test again. The dotnet test command runs a build for the
PrimeService project and then for the PrimeService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers:
0, -1. You could add new tests with the [Test] attribute, but that quickly becomes tedious. There are other NUnit
attributes that enable you to write a suite of similar tests. A [TestCase] attribute is used to create a suite of tests
that execute the same code but have different input arguments. You can use the [TestCase] attribute to specify

[TestCase(-1)]
[TestCase(0)]
[TestCase(1)]
public void IsPrime_ValuesLessThan2_ReturnFalse(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.IsFalse(result, $"{value} should not be prime");
}

if (candidate < 2)

values for those inputs.

Instead of creating new tests, apply this attribute to create a single data driven test. The data driven test is a
method that tests several values less than two, which is the lowest prime number:

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning
of the Main method in the PrimeService.cs file:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished
version of the tests and the complete implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/PrimeService.Tests/PrimeService_IsPrimeShould.cs
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/PrimeService/PrimeService.cs

Unit testing C# with MSTest and .NET Core
9/19/2019 • 4 minutes to read • Edit Online

Create the source project

/unit-testing-using-mstest
 unit-testing-using-mstest.sln
 /PrimeService

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first.");
 }
 }
}

Create the test project

/unit-testing-using-mstest
 unit-testing-using-mstest.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

Open a shell window. Create a directory called unit-testing-using-mstest to hold the solution. Inside this new
directory, run dotnet new sln to create a new solution file for the class library and the test project. Next, create a
PrimeService directory. The following outline shows the directory and file structure thus far:

Make PrimeService the current directory and run dotnet new classlib to create the source project. Rename
Class1.cs to PrimeService.cs. You create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-using-mstest directory. Run
dotnet sln add PrimeService/PrimeService.csproj to add the class library project to the solution.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new mstest .
The dotnet new command creates a test project that uses MSTest as the test library. The generated template

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-with-mstest.md
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.18" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.18" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.csproj

/unit-testing-using-mstest
 unit-testing-using-mstest.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.csproj

Create the first test

using Microsoft.VisualStudio.TestTools.UnitTesting;
using Prime.Services;

namespace Prime.UnitTests.Services
{
 [TestClass]
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;

 public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }

 [TestMethod]
 public void IsPrime_InputIs1_ReturnFalse()
 {
 var result = _primeService.IsPrime(1);

 Assert.IsFalse(result, "1 should not be prime");
 }
 }
}

configures the test runner in the PrimeServiceTests.csproj file:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added the
MSTest SDK, the MSTest test framework, and the MSTest runner. Now, add the PrimeService class library as
another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

The following outline shows the final solution layout:

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.csproj in the unit-testing-using-mstest directory.

You write one failing test, make it pass, then repeat the process. Remove UnitTest1.cs from the PrimeService.Tests
directory and create a new C# file named PrimeService_IsPrimeShould.cs with the following content:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/PrimeService.Tests/PrimeService.Tests.csproj

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first.");
}

Add more features

[DataTestMethod]
[DataRow(-1)]
[DataRow(0)]
[DataRow(1)]
public void IsPrime_ValuesLessThan2_ReturnFalse(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.IsFalse(result, $"{value} should not be prime");
}

if (candidate < 2)

The TestClass attribute denotes a class that contains unit tests. The TestMethod attribute indicates a method is a
test method.

Save this file and execute dotnet test to build the tests and the class library and then run the tests. The MSTest
test runner contains the program entry point to run your tests. dotnet test starts the test runner using the unit
test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the
PrimeService class that works:

In the unit-testing-using-mstest directory, run dotnet test again. The dotnet test command runs a build for the
PrimeService project and then for the PrimeService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime
numbers: 0, -1. You could add new tests with the TestMethod attribute, but that quickly becomes tedious. There are
other MSTest attributes that enable you to write a suite of similar tests. A DataTestMethod attribute represents a
suite of tests that execute the same code but have different input arguments. You can use the DataRow attribute to
specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a single data driven test. The data driven test is a
method that tests several values less than two, which is the lowest prime number:

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning
of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished
version of the tests and the complete implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving
the goals of the application.

https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testclassattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testmethodattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.testmethodattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.datatestmethodattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting.datarowattribute
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/PrimeService.Tests/PrimeService_IsPrimeShould.cs
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/PrimeService/PrimeService.cs

See also
Microsoft.VisualStudio.TestTools.UnitTesting
Use the MSTest framework in unit tests
MSTest V2 test framework docs

https://docs.microsoft.com/dotnet/api/microsoft.visualstudio.testtools.unittesting
https://docs.microsoft.com/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests
https://github.com/Microsoft/testfx-docs

Unit testing F# libraries in .NET Core using dotnet
test and xUnit
9/19/2019 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService

module MyMath =
 let squaresOfOdds xs = raise (System.NotImplementedException("You haven't written a test yet!"))

Creating the test project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

Open a shell window. Create a directory called unit-testing-with-fsharp to hold the solution. Inside this new
directory, run dotnet new sln to create a new solution. This makes it easier to manage both the class library and
the unit test project. Inside the solution directory, create a MathService directory. The directory and file structure
thus far is shown below:

Make MathService the current directory and run dotnet new classlib -lang F# to create the source project. You'll
create a failing implementation of the math service:

Change the directory back to the unit-testing-with-fsharp directory. Run
dotnet sln add .\MathService\MathService.fsproj to add the class library project to the solution.

Next, create the MathService.Tests directory. The following outline shows the directory structure:

Make the MathService.Tests directory the current directory and create a new project using
dotnet new xunit -lang F# . This creates a test project that uses xUnit as the test library. The generated template

configures the test runner in the MathServiceTests.fsproj:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-fsharp-with-dotnet-test.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-with-fsharp/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
</ItemGroup>

dotnet add reference ../MathService/MathService.fsproj

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests
 Test Source Files
 MathServiceTests.fsproj

Creating the first test

[<Fact>]
let ``My test`` () =
 Assert.True(true)

[<Fact>]
let ``Fail every time`` () = Assert.True(false)

The test project requires other packages to create and run unit tests. dotnet new in the previous step added xUnit
and the xUnit runner. Now, add the MathService class library as another dependency to the project. Use the
dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute dotnet sln add .\MathService.Tests\MathService.Tests.fsproj in the unit-testing-with-fsharp directory.

You write one failing test, make it pass, then repeat the process. Open Tests.fs and add the following code:

The [<Fact>] attribute denotes a test method that is run by the test runner. From the unit-testing-with-fsharp,
execute dotnet test to build the tests and the class library and then run the tests. The xUnit test runner contains
the program entry point to run your tests. dotnet test starts the test runner using the unit test project you've
created.

These two tests show the most basic passing and failing tests. My test passes, and Fail every time fails. Now,
create a test for the squaresOfOdds method. The squaresOfOdds method returns a sequence of the squares of all
odd integer values that are part of the input sequence. Rather than trying to write all of those functions at once,
you can iteratively create tests that validate the functionality. Making each test pass means creating the necessary
functionality for the method.

The simplest test we can write is to call squaresOfOdds with all even numbers, where the result should be an empty
sequence of integers. Here's that test:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-with-fsharp/MathService.Tests/MathService.Tests.fsproj

[<Fact>]
let ``Sequence of Evens returns empty collection`` () =
 let expected = Seq.empty<int>
 let actual = MyMath.squaresOfOdds [2; 4; 6; 8; 10]
 Assert.Equal<Collections.Generic.IEnumerable<int>>(expected, actual)

let squaresOfOdds xs =
 Seq.empty<int>

Completing the requirements

[<Fact>]
let ``Sequences of Ones and Evens returns Ones`` () =
 let expected = [1; 1; 1; 1]
 let actual = MyMath.squaresOfOdds [2; 1; 4; 1; 6; 1; 8; 1; 10]
 Assert.Equal<Collections.Generic.IEnumerable<int>>(expected, actual)

let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd

[<Fact>]
let ``SquaresOfOdds works`` () =
 let expected = [1; 9; 25; 49; 81]
 let actual = MyMath.squaresOfOdds [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
 Assert.Equal(expected, actual)

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the
MathService class that works:

In the unit-testing-with-fsharp directory, run dotnet test again. The dotnet test command runs a build for the
MathService project and then for the MathService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. The next simple case works with a sequence whose
only odd number is 1 . The number 1 is easier because the square of 1 is 1. Here's that next test:

Executing dotnet test runs your tests and shows you that the new test fails. Now, update the squaresOfOdds

method to handle this new test. You filter all the even numbers out of the sequence to make this test pass. You can
do that by writing a small filter function and using Seq.filter :

There's one more step to go: square each of the odd numbers. Start by writing a new test:

You can fix the test by piping the filtered sequence through a map operation to compute the square of each odd
number:

let private square x = x * x
let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd
 |> Seq.map square

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

Unit testing F# libraries in .NET Core using dotnet
test and NUnit
9/19/2019 • 5 minutes to read • Edit Online

Prerequisites

Creating the source project

dotnet new sln

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService

dotnet new classlib -lang F#

module MyMath =
 let squaresOfOdds xs = raise (System.NotImplementedException("You haven't written a test yet!"))

dotnet sln add .\MathService\MathService.fsproj

Creating the test project

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

.NET Core 2.1 SDK or later versions.
A text editor or code editor of your choice.

Open a shell window. Create a directory called unit-testing-with-fsharp to hold the solution. Inside this new
directory, run the following command to create a new solution file for the class library and the test project:

Next, create a MathService directory. The following outline shows the directory and file structure so far:

Make MathService the current directory and run the following command to create the source project:

You create a failing implementation of the math service:

Change the directory back to the unit-testing-with-fsharp directory. Run the following command to add the class
library project to the solution:

Next, create the MathService.Tests directory. The following outline shows the directory structure:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-fsharp-with-nunit.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-with-fsharp-nunit/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites
https://dotnet.microsoft.com/download

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests

dotnet new nunit -lang F#

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.5.0" />
 <PackageReference Include="NUnit" Version="3.9.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.9.0" />
</ItemGroup>

dotnet add reference ../MathService/MathService.fsproj

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests
 Test Source Files
 MathService.Tests.fsproj

dotnet sln add .\MathService.Tests\MathService.Tests.fsproj

Creating the first test

Make the MathService.Tests directory the current directory and create a new project using the following command:

This creates a test project that uses NUnit as the test framework. The generated template configures the test
runner in the MathServiceTests.fsproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added NUnit
and the NUnit test adapter. Now, add the MathService class library as another dependency to the project. Use the
dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute the following command in the unit-testing-with-fsharp directory:

You write one failing test, make it pass, then repeat the process. Open UnitTest1.fs and add the following code:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-with-fsharp/MathService.Tests/MathService.Tests.fsproj

namespace MathService.Tests

open System
open NUnit.Framework
open MathService

[<TestFixture>]
type TestClass () =

 [<Test>]
 member this.TestMethodPassing() =
 Assert.True(true)

 [<Test>]
 member this.FailEveryTime() = Assert.True(false)

[<Test>]
member this.TestEvenSequence() =
 let expected = Seq.empty<int>
 let actual = MyMath.squaresOfOdds [2; 4; 6; 8; 10]
 Assert.That(actual, Is.EqualTo(expected))

let squaresOfOdds xs =
 Seq.empty<int>

Completing the requirements

The [<TestFixture>] attribute denotes a class that contains tests. The [<Test>] attribute denotes a test method
that is run by the test runner. From the unit-testing-with-fsharp directory, execute dotnet test to build the tests
and the class library and then run the tests. The NUnit test runner contains the program entry point to run your
tests. dotnet test starts the test runner using the unit test project you've created.

These two tests show the most basic passing and failing tests. My test passes, and Fail every time fails. Now,
create a test for the squaresOfOdds method. The squaresOfOdds method returns a sequence of the squares of all
odd integer values that are part of the input sequence. Rather than trying to write all of those functions at once,
you can iteratively create tests that validate the functionality. Making each test pass means creating the necessary
functionality for the method.

The simplest test we can write is to call squaresOfOdds with all even numbers, where the result should be an empty
sequence of integers. Here's that test:

Notice that the expected sequence has been converted to a list. The NUnit framework relies on many standard
.NET types. That dependency means that your public interface and expected results support ICollection rather than
IEnumerable.

When you run the test, you see that your test fails. You haven't created the implementation yet. Make this test pass
by writing the simplest code in the Library.fs class in your MathService project that works:

In the unit-testing-with-fsharp directory, run dotnet test again. The dotnet test command runs a build for the
MathService project and then for the MathService.Tests project. After building both projects, it runs your tests.

Two tests pass now.

Now that you've made one test pass, it's time to write more. The next simple case works with a sequence whose
only odd number is 1 . The number 1 is easier because the square of 1 is 1. Here's that next test:

https://docs.microsoft.com/dotnet/api/system.collections.icollection
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable

[<Test>]
member public this.TestOnesAndEvens() =
 let expected = [1; 1; 1; 1]
 let actual = MyMath.squaresOfOdds [2; 1; 4; 1; 6; 1; 8; 1; 10]
 Assert.That(actual, Is.EqualTo(expected))

let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd

[<Test>]
member public this.TestSquaresOfOdds() =
 let expected = [1; 9; 25; 49; 81]
 let actual = MyMath.squaresOfOdds [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
 Assert.That(actual, Is.EqualTo(expected))

let private square x = x * x
let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd
 |> Seq.map square

Executing dotnet test fails the new test. You must update the squaresOfOdds method to handle this new test. You
must filter all the even numbers out of the sequence to make this test pass. You can do that by writing a small filter
function and using Seq.filter :

Notice the call to Seq.toList . That creates a list, which implements the ICollection interface.

There's one more step to go: square each of the odd numbers. Start by writing a new test:

You can fix the test by piping the filtered sequence through a map operation to compute the square of each odd
number:

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

https://docs.microsoft.com/dotnet/api/system.collections.icollection

Unit testing F# libraries in .NET Core using dotnet
test and MSTest
9/19/2019 • 5 minutes to read • Edit Online

Creating the source project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService

module MyMath =
 let squaresOfOdds xs = raise (System.NotImplementedException("You haven't written a test yet!"))

Creating the test project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

Open a shell window. Create a directory called unit-testing-with-fsharp to hold the solution. Inside this new
directory, run dotnet new sln to create a new solution. This makes it easier to manage both the class library and
the unit test project. Inside the solution directory, create a MathService directory. The directory and file structure
thus far is shown below:

Make MathService the current directory and run dotnet new classlib -lang F# to create the source project. You'll
create a failing implementation of the math service:

Change the directory back to the unit-testing-with-fsharp directory. Run
dotnet sln add .\MathService\MathService.fsproj to add the class library project to the solution.

Next, create the MathService.Tests directory. The following outline shows the directory structure:

Make the MathService.Tests directory the current directory and create a new project using
dotnet new mstest -lang F# . This creates a test project that uses MSTest as the test framework. The generated

template configures the test runner in the MathServiceTests.fsproj:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-fsharp-with-mstest.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-with-fsharp-mstest/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.18" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.18" />
</ItemGroup>

dotnet add reference ../MathService/MathService.fsproj

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests
 Test Source Files
 MathServiceTests.fsproj

Creating the first test

namespace MathService.Tests

open System
open Microsoft.VisualStudio.TestTools.UnitTesting
open MathService

[<TestClass>]
type TestClass () =

 [<TestMethod>]
 member this.TestMethodPassing() =
 Assert.IsTrue(true)

 [<TestMethod>]
 member this.FailEveryTime() = Assert.IsTrue(false)

The test project requires other packages to create and run unit tests. dotnet new in the previous step added
MSTest and the MSTest runner. Now, add the MathService class library as another dependency to the project. Use
the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute dotnet sln add .\MathService.Tests\MathService.Tests.fsproj in the unit-testing-with-fsharp directory.

You write one failing test, make it pass, then repeat the process. Open Tests.fs and add the following code:

The [<TestClass>] attribute denotes a class that contains tests. The [<TestMethod>] attribute denotes a test
method that is run by the test runner. From the unit-testing-with-fsharp directory, execute dotnet test to build the
tests and the class library and then run the tests. The MSTest test runner contains the program entry point to run
your tests. dotnet test starts the test runner using the unit test project you've created.

These two tests show the most basic passing and failing tests. My test passes, and Fail every time fails. Now,
create a test for the squaresOfOdds method. The squaresOfOdds method returns a list of the squares of all odd
integer values that are part of the input sequence. Rather than trying to write all of those functions at once, you can
iteratively create tests that validate the functionality. Making each test pass means creating the necessary
functionality for the method.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-with-fsharp/MathService.Tests/MathService.Tests.fsproj

[<TestMethod>]
member this.TestEvenSequence() =
 let expected = Seq.empty<int> |> Seq.toList
 let actual = MyMath.squaresOfOdds [2; 4; 6; 8; 10]
 Assert.AreEqual(expected, actual)

let squaresOfOdds xs =
 Seq.empty<int> |> Seq.toList

Completing the requirements

[<TestMethod>]
member public this.TestOnesAndEvens() =
 let expected = [1; 1; 1; 1]
 let actual = MyMath.squaresOfOdds [2; 1; 4; 1; 6; 1; 8; 1; 10]
 Assert.AreEqual(expected, actual)

let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd |> Seq.toList

[<TestMethod>]
member public this.TestSquaresOfOdds() =
 let expected = [1; 9; 25; 49; 81]
 let actual = MyMath.squaresOfOdds [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
 Assert.AreEqual(expected, actual)

The simplest test we can write is to call squaresOfOdds with all even numbers, where the result should be an empty
sequence of integers. Here's that test:

Notice that the expected sequence has been converted to a list. The MSTest library relies on many standard .NET
types. That dependency means that your public interface and expected results support ICollection rather than
IEnumerable.

When you run the test, you see that your test fails. You haven't created the implementation yet. Make this test pass
by writing the simplest code in the Mathservice class that works:

In the unit-testing-with-fsharp directory, run dotnet test again. The dotnet test command runs a build for the
MathService project and then for the MathService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. The next simple case works with a sequence whose
only odd number is 1 . The number 1 is easier because the square of 1 is 1. Here's that next test:

Executing dotnet test fails the new test. You must update the squaresOfOdds method to handle this new test. You
must filter all the even numbers out of the sequence to make this test pass. You can do that by writing a small filter
function and using Seq.filter :

Notice the call to Seq.toList . That creates a list, which implements the ICollection interface.

There's one more step to go: square each of the odd numbers. Start by writing a new test:

You can fix the test by piping the filtered sequence through a map operation to compute the square of each odd

https://docs.microsoft.com/dotnet/api/system.collections.icollection
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.icollection

let private square x = x * x
let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd
 |> Seq.map square
 |> Seq.toList

number:

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

Unit testing Visual Basic .NET Core libraries using
dotnet test and xUnit
9/19/2019 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService

Namespace Prime.Services
 Public Class PrimeService
 Public Function IsPrime(candidate As Integer) As Boolean
 Throw New NotImplementedException("Please create a test first")
 End Function
 End Class
End Namespace

Creating the test project

/unit-testing-vb-using-dotnet-test
 unit-testing-vb-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

Open a shell window. Create a directory called unit-testing-vb-using-dotnet-test to hold the solution. Inside this
new directory, run dotnet new sln to create a new solution. This practice makes it easier to manage both the class
library and the unit test project. Inside the solution directory, create a PrimeService directory. You have the
following directory and file structure thus far :

Make PrimeService the current directory and run dotnet new classlib -lang VB to create the source project.
Rename Class1.VB to PrimeService.VB. You create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-vb-using-dotnet-test directory. Run
dotnet sln add .\PrimeService\PrimeService.vbproj to add the class library project to the solution.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using
dotnet new xunit -lang VB . This command creates a test project that uses xUnit as the test library. The generated

template configures the test runner in the PrimeServiceTests.vbproj:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-visual-basic-with-dotnet-test.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-vb-dotnet-test
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.vbproj

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.vbproj

Creating the first test

Imports Xunit

Namespace PrimeService.Tests
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <Fact>
 Sub IsPrime_InputIs1_ReturnFalse()
 Dim result As Boolean = _primeService.IsPrime(1)

 Assert.False(result, "1 should not be prime")
 End Sub

 End Class
End Namespace

The test project requires other packages to create and run unit tests. dotnet new in the previous step added xUnit
and the xUnit runner. Now, add the PrimeService class library as another dependency to the project. Use the
dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final folder layout:

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.vbproj in the unit-testing-vb-using-dotnet-test
directory.

You write one failing test, make it pass, then repeat the process. Remove UnitTest1.vb from the PrimeService.Tests
directory and create a new Visual Basic file named PrimeService_IsPrimeShould.VB. Add the following code:

The <Fact> attribute denotes a test method that is run by the test runner. From the unit-testing-using-dotnet-test,
execute dotnet test to build the tests and the class library and then run the tests. The xUnit test runner contains
the program entry point to run your tests. dotnet test starts the test runner using the unit test project you've
created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the
PrimeService class that works:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-dotnet-test/PrimeService.Tests/PrimeService.Tests.vbproj

Public Function IsPrime(candidate As Integer) As Boolean
 If candidate = 1 Then
 Return False
 End If
 Throw New NotImplementedException("Please create a test first.")
End Function

Adding more features

 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <Theory>
 <InlineData(-1)>
 <InlineData(0)>
 <InlineData(1)>
 Sub IsPrime_ValueLessThan2_ReturnFalse(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.False(result, $"{value} should not be prime")
 End Sub

 <Theory>
 <InlineData(2)>
 <InlineData(3)>
 <InlineData(5)>
 <InlineData(7)>
 Public Sub IsPrime_PrimesLessThan10_ReturnTrue(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.True(result, $"{value} should be prime")
 End Sub

 <Theory>
 <InlineData(4)>
 <InlineData(6)>
 <InlineData(8)>
 <InlineData(9)>
 Public Sub IsPrime_NonPrimesLessThan10_ReturnFalse(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.False(result, $"{value} should not be prime")
 End Sub
 End Class

In the unit-testing-vb-using-dotnet-test directory, run dotnet test again. The dotnet test command runs a build
for the PrimeService project and then for the PrimeService.Tests project. After building both projects, it runs this
single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers:
0, -1. You could add those cases as new tests with the <Fact> attribute, but that quickly becomes tedious. There
are other xUnit attributes that enable you to write a suite of similar tests. A <Theory> attribute represents a suite of
tests that execute the same code but have different input arguments. You can use the <InlineData> attribute to
specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a single theory. The theory is a method that tests
several values less than two, which is the lowest prime number:

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning
of the method:

if candidate < 2

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished
version of the tests and the complete implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-dotnet-test/PrimeService.Tests/PrimeService_IsPrimeShould.vb
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-dotnet-test/PrimeService/PrimeService.vb

Unit testing Visual Basic .NET Core libraries using
dotnet test and NUnit
9/19/2019 • 4 minutes to read • Edit Online

Prerequisites

Creating the source project

dotnet new sln

/unit-testing-vb-nunit
 unit-testing-vb-nunit.sln
 /PrimeService

dotnet new classlib -lang VB

Imports System

Namespace Prime.Services
 Public Class PrimeService
 Public Function IsPrime(candidate As Integer) As Boolean
 Throw New NotImplementedException("Please create a test first.")
 End Function
 End Class
End Namespace

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

.NET Core 2.1 SDK or later versions.
A text editor or code editor of your choice.

Open a shell window. Create a directory called unit-testing-vb-nunit to hold the solution. Inside this new directory,
run the following command to create a new solution file for the class library and the test project:

Next, create a PrimeService directory. The following outline shows the file structure so far:

Make PrimeService the current directory and run the following command to create the source project:

Rename Class1.VB to PrimeService.VB. You create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-vb-using-mstest directory. Run the following command to add the
class library project to the solution:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-visual-basic-with-nunit.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-vb-nunit/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites
https://dotnet.microsoft.com/download

dotnet sln add .\PrimeService\PrimeService.vbproj

Creating the test project

/unit-testing-vb-nunit
 unit-testing-vb-nunit.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests

dotnet new nunit -lang VB

<ItemGroup>
 <PackageReference Include="nunit" Version="3.12.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.15.1" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.4.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.vbproj

/unit-testing-vb-nunit
 unit-testing-vb-nunit.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests
 Test Source Files
 PrimeService.Tests.vbproj

dotnet sln add .\PrimeService.Tests\PrimeService.Tests.vbproj

Creating the first test

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using the following
command:

The dotnet new command creates a test project that uses NUnit as the test library. The generated template
configures the test runner in the PrimeServiceTests.vbproj file:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added NUnit
and the NUnit test adapter. Now, add the PrimeService class library as another dependency to the project. Use the
dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute the following command in the unit-testing-vb-nunit directory:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-nunit/PrimeService.Tests/PrimeService.Tests.vbproj

Imports NUnit.Framework

Namespace PrimeService.Tests
 <TestFixture>
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <Test>
 Sub IsPrime_InputIs1_ReturnFalse()
 Dim result As Boolean = _primeService.IsPrime(1)

 Assert.False(result, "1 should not be prime")
 End Sub

 End Class
End Namespace

Public Function IsPrime(candidate As Integer) As Boolean
 If candidate = 1 Then
 Return False
 End If
 Throw New NotImplementedException("Please create a test first.")
End Function

Adding more features

You write one failing test, make it pass, then repeat the process. In the PrimeService.Tests directory, rename the
UnitTest1.vb file to PrimeService_IsPrimeShould.VB and replace its entire contents with the following code:

The <TestFixture> attribute indicates a class that contains tests. The <Test> attribute denotes a method that is
run by the test runner. From the unit-testing-vb-nunit, execute dotnet test to build the tests and the class library
and then run the tests. The NUnit test runner contains the program entry point to run your tests. dotnet test

starts the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the
PrimeService class that works:

In the unit-testing-vb-nunit directory, run dotnet test again. The dotnet test command runs a build for the
PrimeService project and then for the PrimeService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers:
0, -1. You could add those cases as new tests with the <Test> attribute, but that quickly becomes tedious. There
are other xUnit attributes that enable you to write a suite of similar tests. A <TestCase> attribute represents a suite
of tests that execute the same code but have different input arguments. You can use the <TestCase> attribute to
specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a series of tests that test several values less than
two, which is the lowest prime number:

<TestFixture>
Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <TestCase(-1)>
 <TestCase(0)>
 <TestCase(1)>
 Sub IsPrime_ValuesLessThan2_ReturnFalse(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub

 <TestCase(2)>
 <TestCase(3)>
 <TestCase(5)>
 <TestCase(7)>
 Public Sub IsPrime_PrimesLessThan10_ReturnTrue(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsTrue(result, $"{value} should be prime")
 End Sub

 <TestCase(4)>
 <TestCase(6)>
 <TestCase(8)>
 <TestCase(9)>
 Public Sub IsPrime_NonPrimesLessThan10_ReturnFalse(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub
End Class

if candidate < 2

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning
of the Main method in the PrimeServices.cs file:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished
version of the tests and the complete implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-nunit/PrimeService.Tests/PrimeService_IsPrimeShould.vb
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-nunit/PrimeService/PrimeService.vb

Unit testing Visual Basic .NET Core libraries using
dotnet test and MSTest
9/19/2019 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-vb-mstest
 unit-testing-vb-mstest.sln
 /PrimeService

Imports System

Namespace Prime.Services
 Public Class PrimeService
 Public Function IsPrime(candidate As Integer) As Boolean
 Throw New NotImplementedException("Please create a test first")
 End Function
 End Class
End Namespace

Creating the test project

/unit-testing-vb-mstest
 unit-testing-vb-mstest.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit
testing concepts. If you prefer to follow the tutorial using a pre-built solution, view or download the sample code
before you begin. For download instructions, see Samples and Tutorials.

This article is about testing a .NET Core project. If you're testing an ASP.NET Core project, see Integration tests in
ASP.NET Core.

Open a shell window. Create a directory called unit-testing-vb-mstest to hold the solution. Inside this new
directory, run dotnet new sln to create a new solution. This practice makes it easier to manage both the class
library and the unit test project. Inside the solution directory, create a PrimeService directory. You have the
following directory and file structure thus far :

Make PrimeService the current directory and run dotnet new classlib -lang VB to create the source project.
Rename Class1.VB to PrimeService.VB. You create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-vb-using-mstest directory. Run
dotnet sln add .\PrimeService\PrimeService.vbproj to add the class library project to the solution.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using
dotnet new mstest -lang VB . This command creates a test project that uses MSTest as the test library. The

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-visual-basic-with-mstest.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-vb-mstest/
https://docs.microsoft.com/en-us/dotnet/samples-and-tutorials/index
https://docs.microsoft.com/aspnet/core/test/integration-tests#test-app-prerequisites

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.5.0" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.18" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.18" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.vbproj

/unit-testing-vb-mstest
 unit-testing-vb-mstest.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.vbproj

Creating the first test

Imports Microsoft.VisualStudio.TestTools.UnitTesting

Namespace PrimeService.Tests
 <TestClass>
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <TestMethod>
 Sub IsPrime_InputIs1_ReturnFalse()
 Dim result As Boolean = _primeService.IsPrime(1)

 Assert.IsFalse(result, "1 should not be prime")
 End Sub

 End Class
End Namespace

generated template configures the test runner in the PrimeServiceTests.vbproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added
MSTest and the MSTest runner. Now, add the PrimeService class library as another dependency to the project. Use
the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.vbproj in the unit-testing-vb-mstest directory.

You write one failing test, make it pass, then repeat the process. Remove UnitTest1.vb from the PrimeService.Tests
directory and create a new Visual Basic file named PrimeService_IsPrimeShould.VB. Add the following code:

The <TestClass> attribute indicates a class that contains tests. The <TestMethod> attribute denotes a method that
is run by the test runner. From the unit-testing-vb-mstest, execute dotnet test to build the tests and the class
library and then run the tests. The MSTest test runner contains the program entry point to run your tests.
dotnet test starts the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-mstest/PrimeService.Tests/PrimeService.Tests.vbproj

Public Function IsPrime(candidate As Integer) As Boolean
 If candidate = 1 Then
 Return False
 End If
 Throw New NotImplementedException("Please create a test first.")
End Function

Adding more features

 <TestClass>
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <DataTestMethod>
 <DataRow(-1)>
 <DataRow(0)>
 <DataRow(1)>
 Sub IsPrime_ValuesLessThan2_ReturnFalse(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub

 <DataTestMethod>
 <DataRow(2)>
 <DataRow(3)>
 <DataRow(5)>
 <DataRow(7)>
 Public Sub IsPrime_PrimesLessThan10_ReturnTrue(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsTrue(result, $"{value} should be prime")
 End Sub

 <DataTestMethod>
 <DataRow(4)>
 <DataRow(6)>
 <DataRow(8)>
 <DataRow(9)>
 Public Sub IsPrime_NonPrimesLessThan10_ReturnFalse(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub
 End Class

PrimeService class that works:

In the unit-testing-vb-mstest directory, run dotnet test again. The dotnet test command runs a build for the
PrimeService project and then for the PrimeService.Tests project. After building both projects, it runs this single

test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers:
0, -1. You could add those cases as new tests with the <TestMethod> attribute, but that quickly becomes tedious.
There are other MSTest attributes that enable you to write a suite of similar tests. A <DataTestMethod> attribute
represents a suite of tests that execute the same code but have different input arguments. You can use the
<DataRow> attribute to specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a single theory. The theory is a method that tests
several values less than two, which is the lowest prime number:

if candidate < 2

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning
of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished
version of the tests and the complete implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new
packages and tests is part of the normal workflow. You've concentrated most of your time and effort on solving the
goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-mstest/PrimeService.Tests/PrimeService_IsPrimeShould.vb
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-mstest/PrimeService/PrimeService.vb

Running selective unit tests
3/1/2019 • 2 minutes to read • Edit Online

MSTest
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace MSTestNamespace
{
 [TestClass]
 public class UnitTest1
 {
 [TestCategory("CategoryA")]
 [Priority(1)]
 [TestMethod]
 public void TestMethod1()
 {
 }

 [Priority(2)]
 [TestMethod]
 public void TestMethod2()
 {
 }
 }
}

EXPRESSION RESULT

dotnet test --filter Method Runs tests whose FullyQualifiedName contains Method .
Available in vstest 15.1+ .

dotnet test --filter Name~TestMethod1 Runs tests whose name contains TestMethod1 .

dotnet test --filter
ClassName=MSTestNamespace.UnitTest1

Runs tests which are in class MSTestNamespace.UnitTest1 .
Note: The ClassName value should have a namespace, so
ClassName=UnitTest1 won't work.

dotnet test --filter
FullyQualifiedName!=MSTestNamespace.UnitTest1.TestMethod1

Runs all tests except
MSTestNamespace.UnitTest1.TestMethod1 .

dotnet test --filter TestCategory=CategoryA Runs tests which are annotated with
[TestCategory("CategoryA")] .

dotnet test --filter Priority=2 Runs tests which are annotated with [Priority(2)] .

With the dotnet test command in .NET Core, you can use a filter expression to run selective tests. This article
demonstrates how to filter which test are run. The following examples use dotnet test . If you're using
vstest.console.exe , replace --filter with --testcasefilter: .

Using conditional operators | and &

https://github.com/dotnet/docs/blob/master/docs/core/testing/selective-unit-tests.md

EXPRESSION RESULT

dotnet test --filter
"FullyQualifiedName~UnitTest1|TestCategory=CategoryA"

Runs tests which have UnitTest1 in FullyQualifiedName

or TestCategory is CategoryA .

dotnet test --filter
"FullyQualifiedName~UnitTest1&TestCategory=CategoryA"

Runs tests which have UnitTest1 in FullyQualifiedName

and TestCategory is CategoryA .

dotnet test --filter "
(FullyQualifiedName~UnitTest1&TestCategory=CategoryA)|Priority=1"

Runs tests which have either FullyQualifiedName

containing UnitTest1 and TestCategory is CategoryA

or Priority is 1.

xUnit
using Xunit;

namespace XUnitNamespace
{
 public class TestClass1
 {
 [Trait("Category", "CategoryA")]
 [Trait("Priority", "1")]
 [Fact]
 public void Test1()
 {
 }

 [Trait("Priority", "2")]
 [Fact]
 public void Test2()
 {
 }
 }
}

EXPRESSION RESULT

dotnet test --filter
DisplayName=XUnitNamespace.TestClass1.Test1

Runs only one test, XUnitNamespace.TestClass1.Test1 .

dotnet test --filter
FullyQualifiedName!=XUnitNamespace.TestClass1.Test1

Runs all tests except XUnitNamespace.TestClass1.Test1 .

dotnet test --filter DisplayName~TestClass1 Runs tests whose display name contains TestClass1 .

EXPRESSION RESULT

dotnet test --filter XUnit Runs tests whose FullyQualifiedName contains XUnit .
Available in vstest 15.1+ .

dotnet test --filter Category=CategoryA Runs tests which have [Trait("Category", "CategoryA")] .

In the code example, the defined traits with keys Category and Priority can be used for filtering.

Using conditional operators | and &

EXPRESSION RESULT

dotnet test --filter
"FullyQualifiedName~TestClass1|Category=CategoryA"

Runs tests which has TestClass1 in FullyQualifiedName

or Category is CategoryA .

dotnet test --filter
"FullyQualifiedName~TestClass1&Category=CategoryA"

Runs tests which has TestClass1 in FullyQualifiedName

and Category is CategoryA .

dotnet test --filter "
(FullyQualifiedName~TestClass1&Category=CategoryA)|Priority=1"

Runs tests which have either FullyQualifiedName

containing TestClass1 and Category is CategoryA or
Priority is 1.

NUnit
using NUnit.Framework;

namespace NUnitNamespace
{
 public class UnitTest1
 {
 [Category("CategoryA")]
 [Property("Priority", 1)]
 [Test]
 public void TestMethod1()
 {
 }

 [Property("Priority", 2)]
 [Test]
 public void TestMethod2()
 {
 }
 }
}

EXPRESSION RESULT

dotnet test --filter Method Runs tests whose FullyQualifiedName contains Method .
Available in vstest 15.1+ .

dotnet test --filter Name~TestMethod1 Runs tests whose name contains TestMethod1 .

dotnet test --filter
FullyQualifiedName~NUnitNamespace.UnitTest1

Runs tests which are in class NUnitNamespace.UnitTest1 .

dotnet test --filter
FullyQualifiedName!=NUnitNamespace.UnitTest1.TestMethod1

Runs all tests except
NUnitNamespace.UnitTest1.TestMethod1 .

dotnet test --filter TestCategory=CategoryA Runs tests which are annotated with
[Category("CategoryA")] .

dotnet test --filter Priority=2 Runs tests which are annotated with [Priority(2)] .

Using conditional operators | and &

EXPRESSION RESULT

dotnet test --filter
"FullyQualifiedName~UnitTest1|TestCategory=CategoryA"

Runs tests which have UnitTest1 in FullyQualifiedName

or TestCategory is CategoryA .

dotnet test --filter
"FullyQualifiedName~UnitTest1&TestCategory=CategoryA"

Runs tests which have UnitTest1 in FullyQualifiedName

and TestCategory is CategoryA .

dotnet test --filter "
(FullyQualifiedName~UnitTest1&TestCategory=CategoryA)|Priority=1"

Runs tests which have either FullyQualifiedName

containing UnitTest1 and TestCategory is CategoryA

or Priority is 1.

Test published output with dotnet vstest
10/22/2019 • 2 minutes to read • Edit Online

dotnet vstest <MyPublishedTests>.dll

Example

dotnet new mstest -o MyProject.Tests
cd MyProject.Tests
dotnet publish -o out
dotnet vstest out/MyProject.Tests.dll

NOTE

See also

You can run tests on already published output by using the dotnet vstest command. This will work on xUnit,
MSTest, and NUnit tests. Simply locate the DLL file that was part of your published output and run:

Where <MyPublishedTests> is the name of your published test project.

The commands below demonstrate running tests on a published DLL.

Note: If your app targets a framework other than netcoreapp , you can still run the dotnet vstest command by passing
in the targeted framework with a framework flag. For example,
dotnet vstest <MyPublishedTests>.dll --Framework:".NETFramework,Version=v4.6" . In Visual Studio 2017 Update 5

and later, the desired framework is automatically detected.

Unit Testing with dotnet test and xUnit
Unit Testing with dotnet test and NUnit
Unit Testing with dotnet test and MSTest

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-published-output.md

Using .NET Core SDK and tools in Continuous
Integration (CI)
5/29/2019 • 8 minutes to read • Edit Online

Installation options for CI build servers
Using the native installers

Using the installer script

NOTE

CI setup examples

This document outlines using the .NET Core SDK and its tools on a build server. The .NET Core toolset works both
interactively, where a developer types commands at a command prompt, and automatically, where a Continuous
Integration (CI) server runs a build script. The commands, options, inputs, and outputs are the same, and the only
things you supply are a way to acquire the tooling and a system to build your app. This document focuses on
scenarios of tool acquisition for CI with recommendations on how to design and structure your build scripts.

Native installers are available for macOS, Linux, and Windows. The installers require admin (sudo) access to the
build server. The advantage of using a native installer is that it installs all of the native dependencies required for
the tooling to run. Native installers also provide a system-wide installation of the SDK.

macOS users should use the PKG installers. On Linux, there's a choice of using a feed-based package manager,
such as apt-get for Ubuntu or yum for CentOS, or using the packages themselves, DEB or RPM. On Windows, use
the MSI installer.

The latest stable binaries are found at .NET downloads. If you wish to use the latest (and potentially unstable) pre-
release tooling, use the links provided at the dotnet/core-sdk GitHub repository. For Linux distributions, tar.gz

archives (also known as tarballs) are available; use the installation scripts within the archives to install .NET Core.

Using the installer script allows for non-administrative installation on your build server and easy automation for
obtaining the tooling. The script takes care of downloading the tooling and extracting it into a default or specified
location for use. You can also specify a version of the tooling that you wish to install and whether you want to
install the entire SDK or only the shared runtime.

The installer script is automated to run at the start of the build to fetch and install the desired version of the SDK.
The desired version is whatever version of the SDK your projects require to build. The script allows you to install
the SDK in a local directory on the server, run the tools from the installed location, and then clean up (or let the CI
service clean up) after the build. This provides encapsulation and isolation to your entire build process. The
installation script reference is found in the dotnet-install article.

Azure DevOps Services

When using the installer script, native dependencies aren't installed automatically. You must install the native dependencies if
the operating system doesn't have them. For more information, see Prerequisites for .NET Core on Linux.

This section describes a manual setup using a PowerShell or bash script, along with a description of several
software as a service (SaaS) CI solutions. The SaaS CI solutions covered are Travis CI, AppVeyor, and Azure
Pipelines.

https://github.com/dotnet/docs/blob/master/docs/core/tools/using-ci-with-cli.md
https://dotnet.microsoft.com/download
https://github.com/dotnet/core-sdk#installers-and-binaries
https://travis-ci.org/
https://www.appveyor.com/
https://docs.microsoft.com/azure/devops/pipelines/index

 Manual setup

$ErrorActionPreference="Stop"
$ProgressPreference="SilentlyContinue"

$LocalDotnet is the path to the locally-installed SDK to ensure the
correct version of the tools are executed.
$LocalDotnet=""
$InstallDir and $CliVersion variables can come from options to the
script.
$InstallDir = "./cli-tools"
$CliVersion = "1.0.1"

Test the path provided by $InstallDir to confirm it exists. If it
does, it's removed. This is not strictly required, but it's a
good way to reset the environment.
if (Test-Path $InstallDir)
{
 rm -Recurse $InstallDir
}
New-Item -Type "directory" -Path $InstallDir

Write-Host "Downloading the CLI installer..."

Use the Invoke-WebRequest PowerShell cmdlet to obtain the
installation script and save it into the installation directory.
Invoke-WebRequest `
 -Uri "https://dot.net/v1/dotnet-install.ps1" `
 -OutFile "$InstallDir/dotnet-install.ps1"

Write-Host "Installing the CLI requested version ($CliVersion) ..."

Install the SDK of the version specified in $CliVersion into the
specified location ($InstallDir).
& $InstallDir/dotnet-install.ps1 -Version $CliVersion `
 -InstallDir $InstallDir

Write-Host "Downloading and installation of the SDK is complete."

$LocalDotnet holds the path to dotnet.exe for future use by the
script.
$LocalDotnet = "$InstallDir/dotnet"

Run the build process now. Implement your build script here.

Each SaaS service has its own methods for creating and configuring a build process. If you use different SaaS
solution than those listed or require customization beyond the pre-packaged support, you must perform at least
some manual configuration.

In general, a manual setup requires you to acquire a version of the tools (or the latest nightly builds of the tools)
and run your build script. You can use a PowerShell or bash script to orchestrate the .NET Core commands or use a
project file that outlines the build process. The orchestration section provides more detail on these options.

After you create a script that performs a manual CI build server setup, use it on your dev machine to build your
code locally for testing purposes. Once you confirm that the script is running well locally, deploy it to your CI build
server. A relatively simple PowerShell script demonstrates how to obtain the .NET Core SDK and install it on a
Windows build server:

You provide the implementation for your build process at the end of the script. The script acquires the tools and
then executes your build process. For UNIX machines, the following bash script performs the actions described in
the PowerShell script in a similar manner:

#!/bin/bash
INSTALLDIR="cli-tools"
CLI_VERSION=1.0.1
DOWNLOADER=$(which curl)
if [-d "$INSTALLDIR"]
then
 rm -rf "$INSTALLDIR"
fi
mkdir -p "$INSTALLDIR"
echo Downloading the CLI installer.
$DOWNLOADER https://dot.net/v1/dotnet-install.sh > "$INSTALLDIR/dotnet-install.sh"
chmod +x "$INSTALLDIR/dotnet-install.sh"
echo Installing the CLI requested version $CLI_VERSION. Please wait, installation may take a few minutes.
"$INSTALLDIR/dotnet-install.sh" --install-dir "$INSTALLDIR" --version $CLI_VERSION
if [$? -ne 0]
then
 echo Download of $CLI_VERSION version of the CLI failed. Exiting now.
 exit 0
fi
echo The CLI has been installed.
LOCALDOTNET="$INSTALLDIR/dotnet"
Run the build process now. Implement your build script here.

Travis CI

AppVeyor

environment:
 matrix:
 - CLI_VERSION: 1.0.1
 - CLI_VERSION: Latest

install:
 # See appveyor.yml example for install script

Azure DevOps Services

You can configure Travis CI to install the .NET Core SDK using the csharp language and the dotnet key. For
more information, see the official Travis CI docs on Building a C#, F#, or Visual Basic Project. Note as you access
the Travis CI information that the community-maintained language: csharp language identifier works for all .NET
languages, including F#, and Mono.

Travis CI runs both macOS and Linux jobs in a build matrix, where you specify a combination of runtime,
environment, and exclusions/inclusions to cover your build combinations for your app. For more information, see
the Customizing the Build article in the Travis CI documentation. The MSBuild-based tools include the LTS (1.0.x)
and Current (1.1.x) runtimes in the package; so by installing the SDK, you receive everything you need to build.

AppVeyor installs the .NET Core 1.0.1 SDK with the Visual Studio 2017 build worker image. Other build images
with different versions of the .NET Core SDK are available. For more information, see the appveyor.yml example
and the Build worker images article in the AppVeyor docs.

The .NET Core SDK binaries are downloaded and unzipped in a subdirectory using the install script, and then
they're added to the PATH environment variable. Add a build matrix to run integration tests with multiple versions
of the .NET Core SDK:

Configure Azure DevOps Services to build .NET Core projects using one of these approaches:

1. Run the script from the manual setup step using your commands.
2. Create a build composed of several Azure DevOps Services built-in build tasks that are configured to use .NET

Core tools.

https://travis-ci.org/
https://docs.travis-ci.com/user/languages/csharp/
https://docs.travis-ci.com/user/customizing-the-build
https://www.appveyor.com/
https://github.com/dotnet/docs/blob/master/appveyor.yml
https://www.appveyor.com/docs/build-environment/#build-worker-images

Both solutions are valid. Using a manual setup script, you control the version of the tools that you receive, since
you download them as part of the build. The build is run from a script that you must create. This article only covers
the manual option. For more information on composing a build with Azure DevOps Services build tasks, see the
Azure Pipelines documentation.

To use a manual setup script in Azure DevOps Services, create a new build definition and specify the script to run
for the build step. This is accomplished using the Azure DevOps Services user interface:

1. Start by creating a new build definition. Once you reach the screen that provides you an option to define
what kind of a build you wish to create, select the Empty option.

2. After configuring the repository to build, you're directed to the build definitions. Select Add build step:

3. You're presented with the Task catalog. The catalog contains tasks that you use in the build. Since you have
a script, select the Add button for PowerShell: Run a PowerShell script.

https://docs.microsoft.com/azure/devops/pipelines/index

 Orchestrating the build

4. Configure the build step. Add the script from the repository that you're building:

Most of this document describes how to acquire the .NET Core tools and configure various CI services without
providing information on how to orchestrate, or actually build, your code with .NET Core. The choices on how to
structure the build process depend on many factors that can't be covered in a general way here. For more
information on orchestrating your builds with each technology, explore the resources and samples provided in the
documentation sets of Travis CI, AppVeyor, and Azure Pipelines.

Two general approaches that you take in structuring the build process for .NET Core code using the .NET Core
tools are using MSBuild directly or using the .NET Core command-line commands. Which approach you should
take is determined by your comfort level with the approaches and trade-offs in complexity. MSBuild provides you
the ability to express your build process as tasks and targets, but it comes with the added complexity of learning

https://travis-ci.org/
https://www.appveyor.com/
https://docs.microsoft.com/azure/devops/pipelines/index

See also

MSBuild project file syntax. Using the .NET Core command-line tools is perhaps simpler, but it requires you to
write orchestration logic in a scripting language like bash or PowerShell.

.NET downloads - Linux

https://dotnet.microsoft.com/download?initial-os=linux

Overview of how .NET Core is versioned
10/9/2019 • 4 minutes to read • Edit Online

Versioning details

CHANGE .NET CORE RUNTIME .NET CORE SDK (*)

Initial release 2.2.0 2.2.100

SDK Patch 2.2.0 2.2.101

Runtime and SDK Patch 2.2.1 2.2.102

SDK Feature change 2.2.1 2.2.200

Semantic versioning

.NET Core refers to the .NET Core Runtime and the .NET Core SDK, which contains the tools you need to develop
applications. .NET Core SDKs are designed to work with any previous version of the .NET Core Runtime. This
article explains the runtime and the SDK version strategy. An explanation of version numbers for .NET Standard
can be found in the article introducing .NET Standard.

The .NET Core Runtime and .NET Core SDK add new features at a different rate - in general the .NET Core SDK
provides updated tools more quickly than the .NET Core Runtime changes the runtime you use in production.

".NET Core 2.1" refers to the .NET Core Runtime version number. The .NET Core Runtime has a
major/minor/patch approach to versioning that follows semantic versioning.

The .NET Core SDK doesn't follow semantic versioning. The .NET Core SDK releases faster and its versions must
communicate both the aligned runtime and the SDK's own minor and patch releases. The first two positions of the
.NET Core SDK version are locked to the .NET Core Runtime it released with. Each version of the SDK can create
applications for this runtime or any lower version.

The third position of the SDK version number communicates both the minor and patch number. The minor version
is multiplied by 100. Minor version 1, patch version 2 would be represented as 102. The final two digits represent
the patch number. For example, the release of .NET Core 2.2 may create releases like the following table:

(*) This chart uses a future 2.2 .NET Core Runtime as the example because a historic artifact meant the first SDK
for .NET Core 2.1 is 2.1.300. For more information, See the .NET Core version selection.

NOTES:

If the SDK has 10 feature updates before a runtime feature update, version numbers roll into the 1000 series
with numbers like 2.2.1000 as the feature release following 2.2.900. This situation isn't expected to occur.
99 patch releases without a feature release won't occur. If a release approaches this number, it forces a feature
release.

You can see more details in the initial proposal at the dotnet/designs repository.

The .NET Core Runtime roughly adheres to Semantic Versioning (SemVer), adopting the use of
MAJOR.MINOR.PATCH versioning, using the various parts of the version number to describe the degree and type of

change.

https://github.com/dotnet/docs/blob/master/docs/core/versions/index.md
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://github.com/dotnet/designs/pull/29
https://semver.org/

MAJOR.MINOR.PATCH[-PRERELEASE-BUILDNUMBER]

Understand runtime version number changes

Version numbers in file names

Preview versions

Servicing versions

Relationship to .NET Standard versions

The optional PRERELEASE and BUILDNUMBER parts are never part of supported releases and only exist on nightly
builds, local builds from source targets, and unsupported preview releases.

MAJOR is incremented when:

Significant changes occur to the product, or a new product direction.
Breaking changes were taken. There's a high bar to accepting breaking changes.
An old version is no longer supported.
A newer MAJOR version of an existing dependency is adopted.

MINOR is incremented when:

Public API surface area is added.
A new behavior is added.
A newer MINOR version of an existing dependency is adopted.
A new dependency is introduced.

PATCH is incremented when:

Bug fixes are made.
Support for a newer platform is added.
A newer PATCH version of an existing dependency is adopted.
Any other change doesn't fit one of the previous cases.

When there are multiple changes, the highest element affected by individual changes is incremented, and the
following ones are reset to zero. For example, when MAJOR is incremented, MINOR and PATCH are reset to zero.
When MINOR is incremented, PATCH is reset to zero while MAJOR is left untouched.

The files downloaded for .NET Core carry the version, for example, dotnet-sdk-2.1.300-win10-x64.exe .

Preview versions have a -preview[number]-([build]|"final") appended to the version. For example,
2.0.0-preview1-final .

After a release goes out, the release branches generally stop producing daily builds and instead start producing
servicing builds. Servicing versions have a -servicing-[number] appended to the version. For example,
2.0.1-servicing-006924 .

.NET Standard consists of a .NET reference assembly. There are multiple implementations specific to each
platform. The reference assembly contains the definition of .NET APIs which are part of a given .NET Standard
version. Each implementation fulfills the .NET Standard contract on the specific platform. You can learn more
about .NET Standard in the article on .NET Standard in the .NET Guide.

The .NET Standard reference assembly uses a MAJOR.MINOR versioning scheme. PATCH level isn't useful for .NET
Standard because it exposes only an API specification (no implementation) and by definition any change to the

https://docs.microsoft.com/en-us/dotnet/standard/net-standard

.NET CORE .NET STANDARD

1.0 up to 1.6

2.0 up to 2.0

2.1 up to 2.0

2.2 up to 2.0

3.0 up to 2.1

See also

API would represent a change in the feature set, and thus a new MINOR version.

The implementations on each platform may be updated, typically as part of the platform release, and thus not
evident to the programmers using .NET Standard on that platform.

Each version of .NET Core implements a version of .NET Standard. Implementing a version of .NET Standard
implies support for previous versions of .NET Standard. .NET Standard and .NET Core version independently. It's a
coincidence that .NET Core 2.0 implements .NET Standard 2.0. .NET Core 2.1 also implements .NET Standard 2.0.
.NET Core will support future versions of .NET Standard as they become available.

Target frameworks
.NET Core distribution packaging
.NET Core Support Lifecycle Fact Sheet
.NET Core 2+ Version Binding
Docker images for .NET Core

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://dotnet.microsoft.com/platform/support/policy
https://github.com/dotnet/designs/issues/3
https://hub.docker.com/_/microsoft-dotnet-core/

Select the .NET Core version to use
11/3/2019 • 5 minutes to read • Edit Online

The SDK uses the latest installed version

{
 "sdk": {
 "version": "2.0.0"
 }
}

This article explains the policies used by the .NET Core tools, SDK, and runtime for selecting versions. These
policies provide a balance between running applications using the specified versions and enabling ease of
upgrading both developer and end-user machines. These policies perform the following actions:

Easy and efficient deployment of .NET Core, including security and reliability updates.
Use the latest tools and commands independent of target runtime.

Version selection occurs:

When you run an SDK command, the SDK uses the latest installed version.
When you build an assembly, target framework monikers define build time APIs.
When you run a .NET Core application, target framework dependent apps roll forward.
When you publish a self-contained application, self-contained deployments include the selected runtime.

The rest of this document examines those four scenarios.

SDK commands include dotnet new and dotnet run . The .NET Core CLI must choose an SDK version for every
dotnet command. It uses the latest SDK installed on the machine by default, even if:

The project targets an earlier version of the .NET Core runtime.
The latest version of the .NET Core SDK is a preview version.

You can take advantage of the latest SDK features and improvements while targeting earlier .NET Core runtime
versions. You can target multiple runtime versions of .NET Core on different projects, using the same SDK tools
for all projects.

On rare occasions, you may need to use an earlier version of the SDK. You specify that version in a global.json file.
The "use latest" policy means you only use global.json to specify a .NET Core SDK version earlier than the latest
installed version.

global.json can be placed anywhere in the file hierarchy. The CLI searches upward from the project directory for
the first global.json it finds. You control which projects a given global.json applies to by its place in the file system.
The .NET CLI searches for a global.json file iteratively navigating the path upward from the current working
directory. The first global.json file found specifies the version used. If that SDK version is installed, that version is
used. If the SDK specified in the global.json is not found, the .NET CLI uses matching rules to select a compatible
SDK, or fails if none is found.

The following example shows the global.json syntax:

The process for selecting an SDK version is:

1. dotnet searches for a global.json file iteratively reverse-navigating the path upward from the current working

https://github.com/dotnet/docs/blob/master/docs/core/versions/selection.md

Target Framework Monikers define build time APIs

<TargetFramework>netcoreapp2.0</TargetFramework>

<TargetFrameworks>netcoreapp2.0;net47</TargetFrameworks>

Framework-dependent apps roll forward

directory.
2. dotnet uses the SDK specified in the first global.json found.
3. dotnet uses the latest installed SDK if no global.json is found.

You can learn more about selecting an SDK version in the Matching rules section of the article on global.json.

You build your project against APIs defined in a Target Framework Moniker (TFM). You specify the target
framework in the project file. Set the TargetFramework element in your project file as shown in the following
example:

You may build your project against multiple TFMs. Setting multiple target frameworks is more common for
libraries but can be done with applications as well. You specify a TargetFrameworks property (plural of
TargetFramework). The target frameworks are semicolon-delimited as shown in the following example:

A given SDK supports a fixed set of frameworks, capped to the target framework of the runtime it ships with. For
example, the .NET Core 2.0 SDK includes the .NET Core 2.0 runtime, which is an implementation of the
netcoreapp2.0 target framework. The .NET Core 2.0 SDK supports netcoreapp1.0 , netcoreapp1.1 , and
netcoreapp2.0 but not netcoreapp2.1 (or higher). You install the .NET Core 2.1 SDK to build for netcoreapp2.1 .

.NET Standard target frameworks are also capped to the target framework of the runtime the SDK ships with. The

.NET Core 2.0 SDK is capped to netstandard2.0 .

When you run an application from source with dotnet run , from a framework-dependent deployment with
dotnet myapp.dll , or from a framework-dependent executable with myapp.exe , the dotnet executable is the

host for the application.

The host chooses the latest patch version installed on the machine. For example, if you specified netcoreapp2.0 in
your project file, and 2.0.4 is the latest .NET runtime installed, the 2.0.4 runtime is used.

If no acceptable 2.0.* version is found, a new 2.* version is used. For example, if you specified netcoreapp2.0

and only 2.1.0 is installed, the application runs using the 2.1.0 runtime. This behavior is referred to as "minor
version roll-forward." Lower versions also won't be considered. When no acceptable runtime is installed, the
application won't run.

A few usage examples demonstrate the behavior, if you target 2.0:

2.0 is specified. 2.0.5 is the highest patch version installed. 2.0.5 is used.
2.0 is specified. No 2.0.* versions are installed. 1.1.1 is the highest runtime installed. An error message is
displayed.
2.0 is specified. No 2.0.* versions are installed. 2.2.2 is the highest 2.x runtime version installed. 2.2.2 is used.
2.0 is specified. No 2.x versions are installed. 3.0.0 is installed. An error message is displayed.

Minor version roll-forward has one side-effect that may affect end users. Consider the following scenario:

1. The application specifies that 2.0 is required.
2. When run, version 2.0.* is not installed, however, 2.2.2 is. Version 2.2.2 will be used.

https://docs.microsoft.com/en-us/dotnet/standard/frameworks

 Self-contained deployments include the selected runtime

<RuntimeFrameworkVersion>2.0.4</RuntimeFrameworkVersion>

3. Later, the user installs 2.0.5 and runs the application again, 2.0.5 will now be used.

It's possible that 2.0.5 and 2.2.2 behave differently, particularly for scenarios like serializing binary data.

You can publish an application as a self-contained distribution. This approach bundles the .NET Core runtime
and libraries with your application. Self-contained deployments don't have a dependency on runtime
environments. Runtime version selection occurs at publishing time, not run time.

The publishing process selects the latest patch version of the given runtime family. For example, dotnet publish
will select .NET Core 2.0.4 if it is the latest patch version in the .NET Core 2.0 runtime family. The target
framework (including the latest installed security patches) is packaged with the application.

It's an error if the minimum version specified for an application isn't satisfied. dotnet publish binds to the latest
runtime patch version (within a given major.minor version family). dotnet publish doesn't support the roll-
forward semantics of dotnet run . For more information about patches and self-contained deployments, see the
article on runtime patch selection in deploying .NET Core applications.

Self-contained deployments may require a specific patch version. You can override the minimum runtime patch
version (to higher or lower versions) in the project file, as shown in the following example:

The RuntimeFrameworkVersion element overrides the default version policy. For self-contained deployments, the
RuntimeFrameworkVersion specifies the exact runtime framework version. For framework-dependent applications,

the RuntimeFrameworkVersion specifies the minimum required runtime framework version.

How to remove the .NET Core Runtime and SDK
9/13/2019 • 5 minutes to read • Edit Online

Should I remove a version?

Determine what is installed

Over time, as you install updated versions of the .NET Core runtime and SDK, you may want to remove outdated
versions of .NET Core from your machine. Removing older versions of the runtime may change the runtime
chosen to run shared framework applications, as detailed in the article on .NET Core version selection.

The .NET Core version selection behaviors and the runtime compatibility of .NET Core across updates enables safe
removal of previous versions. .NET Core runtime updates are compatible within a major version 'band' such as 1.x
and 2.x. Additionally, newer releases of the .NET Core SDK generally maintain the ability to build applications that
target previous versions of the runtime in a compatible manner.

In general, you only need the latest SDK and latest patch version of the runtimes required for your application.
Instances where retaining older SDK or Runtime versions include maintaining project.json-based applications.
Unless your application has specific reasons for earlier SDKs or runtimes, you may safely remove older versions.

Starting with .NET Core 2.1, the .NET CLI has options you can use to list the versions of the SDK and runtime that
are installed on your machine. Use dotnet --list-sdks to see the list of SDKs installed on your machine. Use
dotnet --list-runtimes to see the list of runtimes installed on your machine. The following text shows typical

output for Windows, macOS, or Linux:

Windows
Linux
macOS

https://github.com/dotnet/docs/blob/master/docs/core/versions/remove-runtime-sdk-versions.md

C:\> dotnet --list-sdks
2.1.200-preview-007474 [C:\Program Files\dotnet\sdk]
2.1.200-preview-007480 [C:\Program Files\dotnet\sdk]
2.1.200-preview-007509 [C:\Program Files\dotnet\sdk]
2.1.200-preview-007570 [C:\Program Files\dotnet\sdk]
2.1.200-preview-007576 [C:\Program Files\dotnet\sdk]
2.1.200-preview-007587 [C:\Program Files\dotnet\sdk]
2.1.200-preview-007589 [C:\Program Files\dotnet\sdk]
2.1.200 [C:\Program Files\dotnet\sdk]
2.1.201 [C:\Program Files\dotnet\sdk]
2.1.202 [C:\Program Files\dotnet\sdk]
2.1.300-preview2-008533 [C:\Program Files\dotnet\sdk]
2.1.300 [C:\Program Files\dotnet\sdk]
2.1.400-preview-009063 [C:\Program Files\dotnet\sdk]
2.1.400-preview-009088 [C:\Program Files\dotnet\sdk]
2.1.400-preview-009171 [C:\Program Files\dotnet\sdk]

C:\> dotnet --list-runtimes
Microsoft.AspNetCore.All 2.1.0-preview2-final [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.All]
Microsoft.AspNetCore.All 2.1.0 [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.All]
Microsoft.AspNetCore.All 2.1.1 [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.All]
Microsoft.AspNetCore.All 2.1.2 [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.All]
Microsoft.AspNetCore.App 2.1.0-preview2-final [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.App]
Microsoft.AspNetCore.App 2.1.0 [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.App]
Microsoft.AspNetCore.App 2.1.1 [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.App]
Microsoft.AspNetCore.App 2.1.2 [C:\Program Files\dotnet\shared\Microsoft.AspNetCore.App]
Microsoft.NETCore.App 2.0.6 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]
Microsoft.NETCore.App 2.0.7 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]
Microsoft.NETCore.App 2.0.9 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]
Microsoft.NETCore.App 2.1.0-preview2-26406-04 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]
Microsoft.NETCore.App 2.1.0 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]
Microsoft.NETCore.App 2.1.1 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]
Microsoft.NETCore.App 2.1.2 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]

Uninstalling .NET Core
Windows
Linux
macOS

.NET Core uses the Windows Add/Remove Programs dialog to remove versions of the .NET Core runtime and
SDK. The following figure shows the Add/Remove Programs dialog with several versions of the .NET runtime
and SDK installed.

Select any versions you want to remove from your machine and click Uninstall.

.NET Core RID Catalog
10/30/2019 • 4 minutes to read • Edit Online

RID graph

"osx.10.12-x64": {
 "#import": ["osx.10.12", "osx.10.11-x64"]
}

RID is short for Runtime IDentifier. R ID values are used to identify target platforms where the application
runs. They're used by .NET packages to represent platform-specific assets in NuGet packages. The following
values are examples of RIDs: linux-x64 , ubuntu.14.04-x64 , win7-x64 , or osx.10.12-x64 . For the packages
with native dependencies, the RID designates on which platforms the package can be restored.

A single RID can be set in the <RuntimeIdentifier> element of your project file. Multiple RIDs can be defined
as a semicolon-delimited list in the project file's <RuntimeIdentifiers> element. They're also used via the
--runtime option with the following .NET Core CLI commands:

dotnet build
dotnet clean
dotnet pack
dotnet publish
dotnet restore
dotnet run
dotnet store

RIDs that represent concrete operating systems usually follow this pattern:
[os].[version]-[architecture]-[additional qualifiers] where:

[os] is the operating/platform system moniker. For example, ubuntu .

[version] is the operating system version in the form of a dot-separated (.) version number. For
example, 15.10 .

The version shouldn't be marketing versions, as they often represent multiple discrete versions of
the operating system with varying platform API surface area.

[architecture] is the processor architecture. For example: x86 , x64 , arm , or arm64 .

[additional qualifiers] further differentiate different platforms. For example: aot .

The RID graph or runtime fallback graph is a list of RIDs that are compatible with each other. The RIDs are
defined in the Microsoft.NETCore.Platforms package. You can see the list of supported RIDs and the RID
graph in the runtime.json file, which is located at the CoreFX repo. In this file, you can see that all RIDs, except
for the base one, contain an "#import" statement. These statements indicate compatible RIDs.

When NuGet restores packages, it tries to find an exact match for the specified runtime. If an exact match is
not found, NuGet walks back the graph until it finds the closest compatible system according to the RID
graph.

The following example is the actual entry for the osx.10.12-x64 RID:

https://github.com/dotnet/docs/blob/master/docs/core/rid-catalog.md
https://www.nuget.org/packages/Microsoft.NETCore.Platforms/
https://github.com/dotnet/corefx/blob/master/src/pkg/Microsoft.NETCore.Platforms/runtime.json

 win7-x64 win7-x86
 | \ / |
 | win7 |
 | | |
 win-x64 | win-x86
 \ | /
 win
 |
 any

Using RIDs

Windows RIDs

The above RID specifies that osx.10.12-x64 imports osx.10.11-x64 . So, when NuGet restores packages, it
tries to find an exact match for osx.10.12-x64 in the package. If NuGet cannot find the specific runtime, it can
restore packages that specify osx.10.11-x64 runtimes, for example.

The following example shows a slightly bigger RID graph also defined in the runtime.json file:

All RIDs eventually map back to the root any RID.

There are some considerations about RIDs that you have to keep in mind when working with them:

RIDs are opaque strings and should be treated as black boxes.
Don't build RIDs programmatically.
Use RIDs that are already defined for the platform.
The RIDs need to be specific, so don't assume anything from the actual RID value.

To be able to use RIDs, you have to know which RIDs exist. New values are added regularly to the platform.
For the latest and complete version, see the runtime.json file on CoreFX repo.

.NET Core 2.0 SDK introduces the concept of portable RIDs. They are new values added to the RID graph that
aren't tied to a specific version or OS distribution and are the preferred choice when using .NET Core 2.0 and
higher. They're particularly useful when dealing with multiple Linux distros since most distribution RIDs are
mapped to the portable RIDs.

The following list shows a small subset of the most common RIDs used for each OS.

Only common values are listed. For the latest and complete version, see the runtime.json file on CoreFX repo.

Portable (.NET Core 2.0 or later versions)

Windows 7 / Windows Server 2008 R2

Windows 8.1 / Windows Server 2012 R2

Windows 10 / Windows Server 2016

win-x64

win-x86

win-arm

win-arm64

win7-x64

win7-x86

win81-x64

win81-x86

win81-arm

https://github.com/dotnet/corefx/blob/master/src/pkg/Microsoft.NETCore.Platforms/runtime.json
https://github.com/dotnet/corefx/blob/master/src/pkg/Microsoft.NETCore.Platforms/runtime.json

Linux RIDs

macOS RIDs

See also

win10-x64

win10-x86

win10-arm

win10-arm64

See Prerequisites for .NET Core on Windows for more information.

Only common values are listed. For the latest and complete version, see the runtime.json file on CoreFX repo.
Devices running a distribution not listed below may work with one of the Portable RIDs. For example,
Raspberry Pi devices running a Linux distribution not listed can be targeted with linux-arm .

Portable (.NET Core 2.0 or later versions)

Red Hat Enterprise Linux

Tizen (.NET Core 2.0 or later versions)

linux-x64 (Most desktop distributions like CentOS, Debian, Fedora, Ubuntu and derivatives)
linux-musl-x64 (Lightweight distributions using musl like Alpine Linux)
linux-arm (Linux distributions running on ARM like Raspberry Pi)

rhel-x64 (Superseded by linux-x64 for RHEL above version 6)
rhel.6-x64 (.NET Core 2.0 or later versions)

tizen

tizen.4.0.0

tizen.5.0.0

See Prerequisites for .NET Core on Linux for more information.

macOS RIDs use the older "OSX" branding. Only common values are listed. For the latest and complete
version, see the runtime.json file on CoreFX repo.

Portable (.NET Core 2.0 or later versions)

macOS 10.10 Yosemite

macOS 10.11 El Capitan

macOS 10.12 Sierra (.NET Core 1.1 or later versions)

macOS 10.13 High Sierra (.NET Core 1.1 or later versions)

macOS 10.14 Mojave (.NET Core 1.1 or later versions)

osx-x64 (Minimum OS version is macOS 10.12 Sierra)

osx.10.10-x64

osx.10.11-x64

osx.10.12-x64

osx.10.13-x64

osx.10.14-x64

See Prerequisites for .NET Core on macOS for more information.

Runtime IDs

https://github.com/dotnet/corefx/blob/master/src/pkg/Microsoft.NETCore.Platforms/runtime.json
https://wiki.musl-libc.org/projects-using-musl.html
https://github.com/dotnet/corefx/blob/master/src/pkg/Microsoft.NETCore.Platforms/runtime.json
https://github.com/dotnet/corefx/blob/master/src/pkg/Microsoft.NETCore.Platforms/readme.md

.NET Core SDK overview
8/17/2019 • 2 minutes to read • Edit Online

Acquiring the .NET Core SDK

See also

The .NET Core SDK is a set of libraries and tools that allow developers to create .NET Core applications and
libraries. It contains the following components that are used to build and run applications:

The .NET Core CLI tools.
.NET Core libraries and runtime.
The dotnet driver.

As with any tooling, the first thing is to get the tools to your machine. Depending on your scenario, you can install
the SDK using one of the following methods:

Use the native installers.
Use the installation shell script.

The native installers are primarily meant for developer's machines. The SDK is distributed using each supported
platform's native install mechanism, such as DEB packages on Ubuntu or MSI bundles on Windows. These
installers install and set up the environment as needed for the user to use the SDK immediately after the install.
However, they also require administrative privileges on the machine. You can find the SDK to install on the .NET
downloads page.

Install scripts, on the other hand, don't require administrative privileges. However, they also don't install any
prerequisites on the machine; you need to install all of the prerequisites manually. The scripts are meant mostly for
setting up build servers or when you wish to install the tools without admin privileges (do note the prerequisites
caveat above). You can find more information in the install script reference article. If you're interested in how to set
up the SDK on your CI build server, see the Using .NET Core SDK and tools in Continuous Integration (CI) article.

By default, the SDK installs in a "side-by-side" (SxS) manner, which means multiple versions of the CLI tools can
coexist at any given time on a single machine. How the version gets picked when you're running CLI commands is
explained in more detail in the Select the .NET Core version to use article.

.NET Core CLI

.NET Core versioning overview
How to remove the .NET Core runtime and SDK
Select the .NET Core version to use

https://github.com/dotnet/docs/blob/master/docs/core/sdk.md
https://dotnet.microsoft.com/download

.NET Core command-line interface (CLI) tools
9/19/2019 • 3 minutes to read • Edit Online

Installation

CLI commands

The .NET Core command-line interface (CLI) is a new cross-platform toolchain for developing .NET applications.
The CLI is a foundation upon which higher-level tools, such as Integrated Development Environments (IDEs),
editors, and build orchestrators, can rest.

Either use the native installers or use the installation shell scripts:

The native installers are primarily used on developer's machines and use each supported platform's native
install mechanism, for instance, DEB packages on Ubuntu or MSI bundles on Windows. These installers
install and configure the environment for immediate use by the developer but require administrative
privileges on the machine. You can view the installation instructions in the .NET Core installation guide.
Shell scripts are primarily used for setting up build servers or when you wish to install the tools without
administrative privileges. Install scripts don't install prerequisites on the machine, which must be installed
manually. For more information, see the install script reference topic. For information on how to set up CLI
on your continuous integration (CI) build server, see Using .NET Core SDK and tools in Continuous
Integration (CI).

By default, the CLI installs in a side-by-side (SxS) manner, so multiple versions of the CLI tools can coexist on a
single machine. Determining which version is used on a machine where multiple versions are installed is
explained in more detail in the Driver section.

The following commands are installed by default:

.NET Core 2.x

.NET Core 1.x

Basic commands

new
restore
build
publish
run
test
vstest
pack
migrate
clean
sln
help
store

Project modification commands

https://github.com/dotnet/docs/blob/master/docs/core/tools/index.md
https://aka.ms/dotnetcoregs

Command structure

dotnet new console
dotnet build --output /build_output
dotnet /build_output/my_app.dll

Driver

dotnet build

Command

Arguments

add package
add reference
remove package
remove reference
list reference

Advanced commands

nuget delete
nuget locals
nuget push
msbuild
dotnet install script

The CLI adopts an extensibility model that allows you to specify additional tools for your projects. For more
information, see the .NET Core CLI extensibility model topic.

CLI command structure consists of the driver ("dotnet"), the command, and possibly command arguments and
options. You see this pattern in most CLI operations, such as creating a new console app and running it from the
command line as the following commands show when executed from a directory named my_app:

.NET Core 2.x

.NET Core 1.x

The driver is named dotnet and has two responsibilities, either running a framework-dependent app or executing
a command.

To run a framework-dependent app, specify the app after the driver, for example, dotnet /path/to/my_app.dll .
When executing the command from the folder where the app's DLL resides, simply execute dotnet my_app.dll .
If you want to use a specific version of the .NET Core Runtime, use the --fx-version <VERSION> option (see the
dotnet command reference).

When you supply a command to the driver, dotnet.exe starts the CLI command execution process. For example:

First, the driver determines the version of the SDK to use. If there is no 'global.json', the latest version of the SDK
available is used. This might be either a preview or stable version, depending on what is latest on the machine.
Once the SDK version is determined, it executes the command.

The command performs an action. For example, dotnet build builds code. dotnet publish publishes code. The
commands are implemented as a console application using a dotnet {command} convention.

The arguments you pass on the command line are the arguments to the command invoked. For example when

 Options

Migration from project.json

See also

you execute dotnet publish my_app.csproj , the my_app.csproj argument indicates the project to publish and is
passed to the publish command.

The options you pass on the command line are the options to the command invoked. For example when you
execute dotnet publish --output /build_output , the --output option and its value are passed to the publish

command.

If you used Preview 2 tooling to produce project.json-based projects, consult the dotnet migrate topic for
information on migrating your project to MSBuild/.csproj for use with release tooling. For .NET Core projects
created prior to the release of Preview 2 tooling, either manually update the project following the guidance in
Migrating from DNX to .NET Core CLI (project.json) and then use dotnet migrate or directly upgrade your
projects.

dotnet/CLI GitHub Repository
.NET Core installation guide

https://github.com/dotnet/cli/
https://aka.ms/dotnetcoregs

.NET Core Global Tools overview
10/15/2019 • 4 minutes to read • Edit Online

IMPORTANT

Find a .NET Core Global Tool

Check the author and statistics

Install a Global Tool

dotnet tool install -g dotnetsay

This article applies to: ✓ .NET Core 2.1 SDK

A .NET Core Global Tool is a special NuGet package that contains a console application. A Global Tool can be
installed on your machine on a default location that is included in the PATH environment variable or on a custom
location.

If you want to use a .NET Core Global Tool:

Find information about the tool (usually a website or GitHub page).
Check the author and statistics in the home for the feed (usually NuGet.org).
Install the tool.
Call the tool.
Update the tool.
Uninstall the tool.

.NET Core Global Tools appear on your path and run in full trust. Do not install .NET Core Global Tools unless you trust the
author.

Currently, there isn't a Global Tool search feature in the .NET Core Command-line Interface (CLI). The following
are some recommendations on how to find tools:

You can find .NET Core Global Tools on NuGet. However, NuGet doesn't yet allow you to search specifically
for .NET Core Global Tools.
You may find tool recommendations in blog posts or in the natemcmaster/dotnet-tools GitHub repository.
You can see the source code for the Global Tools created by the ASP.NET team at the aspnet/DotNetTools
GitHub repository.
You can learn about diagnostic tools at .NET Core dotnet diagnostic Global Tools.

Since .NET Core Global Tools run in full trust and are generally installed on your path, they can be very powerful.
Don't download tools from people you don't trust.

If the tool is hosted on NuGet, you can check the author and statistics by searching for the tool.

To install a Global Tool, you use the dotnet tool install .NET Core CLI command. The following example shows
how to install a Global Tool in the default location:

https://github.com/dotnet/docs/blob/master/docs/core/tools/global-tools.md
https://www.nuget.org
https://github.com/natemcmaster/dotnet-tools
https://github.com/aspnet/DotNetTools/

dotnet tool install -g <package-name> --version <version-number>

You can invoke the tool using the following command: dotnetsay
Tool 'dotnetsay' (version '2.0.0') was successfully installed.

OS PATH

Linux/macOS $HOME/.dotnet/tools

Windows %USERPROFILE%\.dotnet\tools

Use the tool

dotnetsay

dotnet doc

If the tool can't be installed, error messages are displayed. Check that the feeds you expected are being checked.

If you're trying to install a pre-release version or a specific version of the tool, you can specify the version
number using the following format:

If installation is successful, a message is displayed showing the command used to call the tool and the version
installed, similar to the following example:

Global Tools can be installed in the default directory or in a specific location. The default directories are:

These locations are added to the user's path when the SDK is first run, so Global Tools installed there can be
called directly.

Note that the Global Tools are user-specific, not machine global. Being user-specific means you cannot install a
Global Tool that is available to all users of the machine. The tool is only available for each user profile where the
tool was installed.

Global Tools can also be installed in a specific directory. When installed in a specific directory, the user must
ensure the command is available, by including that directory in the path, by calling the command with the
directory specified, or calling the tool from within the specified directory. In this case, the .NET Core CLI doesn't
add this location automatically to the PATH environment variable.

Once the tool is installed, you can call it by using its command. Note that the command may not be the same as
the package name.

If the command is dotnetsay , you call it with:

If the tool author wanted the tool to appear in the context of the dotnet prompt, they may have written it in a
way that you call it as dotnet <command> , such as:

You can find which tools are included in an installed Global Tool package by listing the installed packages using
the dotnet tool list command.

You can also look for usage instructions at the tool's website or by typing one of the following commands:

<command> --help
dotnet <command> --help

Other CLI commands

dotnet tool --help

dotnet tool update -g <packagename>

dotnet tool uninstall -g <packagename>

dotnet tool list -g

See also

The .NET Core SDK contains other commands that support .NET Core Global Tools. Use any of the dotnet tool

commands with one of the following options:

--global or -g specifies that the command is applicable to user-wide Global Tools.
--tool-path specifies a custom location for Global Tools.

To find out which commands are available for Global Tools:

Updating a Global Tool involves uninstalling and reinstalling it with the latest stable version. To update a Global
Tool, use the dotnet tool update command:

Remove a Global Tool using the dotnet tool uninstall:

To display all of the Global Tools currently installed on the machine, along with their version and commands, use
the dotnet tool list command:

Troubleshoot .NET Core tool usage issues

Create a .NET Core Global Tool using the .NET Core
CLI
9/19/2019 • 3 minutes to read • Edit Online

Create a project

dotnet new console -o botsay

Add the code

using System.Reflection;

This article teaches you how to create and package a .NET Core Global Tool. The .NET Core CLI allows you to
create a console application as a Global Tool, which others can easily install and run. .NET Core Global Tools are
NuGet packages that are installed from the .NET Core CLI. For more information about Global Tools, see .NET
Core Global Tools overview.

This article applies to: ✓ .NET Core 2.1 SDK

This article uses the .NET Core CLI to create and manage a project.

Our example tool will be a console application that generates an ASCII bot and prints a message. First, create a
new .NET Core Console Application.

Navigate to the botsay directory created by the previous command.

Open the Program.cs file with your favorite text editor, such as vim or Visual Studio Code.

Add the following using directive to the top of the file, this helps shorten the code to display the version
information of the application.

Next, move down to the Main method. Replace the method with the following code to process the command-line
arguments for your application. If no arguments were passed, a short help message is displayed. Otherwise, all of
those arguments are transformed into a string and printed with the bot.

https://github.com/dotnet/docs/blob/master/docs/core/tools/global-tools-how-to-create.md
https://code.visualstudio.com/

static void Main(string[] args)
{
 if (args.Length == 0)
 {
 var versionString = Assembly.GetEntryAssembly()
 .GetCustomAttribute<AssemblyInformationalVersionAttribute>()
 .InformationalVersion
 .ToString();

 Console.WriteLine($"botsay v{versionString}");
 Console.WriteLine("-------------");
 Console.WriteLine("\nUsage:");
 Console.WriteLine(" botsay <message>");
 return;
 }

 ShowBot(string.Join(' ', args));
}

Create the bot
Next, add a new method named ShowBot that takes a string parameter. This method prints out the message and
the ASCII bot. The ASCII bot code was taken from the dotnetbot sample.

https://github.com/dotnet/core/blob/master/samples/dotnetsay/Program.cs

static void ShowBot(string message)
{
 string bot = $"\n {message}";
 bot += @"

 \
 \

 '

 '..'..
 '..'.....
 '..........'..'..'....
 '..........'..'..'.....
 .'....'..'..........'..'.......'.
 .'..................'...
 '.........
 . _ __
 .. # ##

 '................
 '..'......
 '..'.....
 '.............'..'....
 ..'..'... '.......
 ...'......

....... '...'.'. '.'.'.'
....... '.. ..'.....
 '........

 '..............
 '.. .'.'............
 '.'.............
 '.. ..'..'...........
 '..............

";
 Console.WriteLine(bot);
}

Test the tool

dotnet run
dotnet run -- "Hello from the bot"
dotnet run -- hello from the bot

Setup the global tool

Run the project and see the output. Try these variations of the command-line to see different results:

All arguments after the -- delimiter are passed to your application.

Before you can pack and distribute the application as a Global Tool, you need to modify the project file. Open the
botsay.csproj file and add three new XML nodes to the <Project><PropertyGroup> node:

<PackAsTool>

[REQUIRED] Indicates that the application will be packaged for install as a Global Tool.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.1</TargetFramework>

 <PackAsTool>true</PackAsTool>
 <ToolCommandName>botsay</ToolCommandName>
 <PackageOutputPath>./nupkg</PackageOutputPath>

 </PropertyGroup>

</Project>

dotnet pack

dotnet tool install --global --add-source ./nupkg botsay

You can invoke the tool using the following command: botsay
Tool 'botsay' (version '1.0.0') was successfully installed.

<ToolCommandName>

[OPTIONAL] An alternative name for the tool, otherwise the command name for the tool will be named
after the project file. You can have multiple tools in a package, choosing a unique and friendly name helps
differentiate from other tools in the same package.

<PackageOutputPath>

[OPTIONAL] Where the NuGet package will be produced. The NuGet package is what the .NET Core CLI
Global Tools uses to install your tool.

Even though <PackageOutputPath> is optional, use it in this example. Make sure you set it:
<PackageOutputPath>./nupkg</PackageOutputPath> .

Next, create a NuGet package for your application.

The botsay.1.0.0.nupkg file is created in the folder identified by the <PackageOutputPath> XML value from the
botsay.csproj file, which in this example is the ./nupkg folder. This makes it easy to install and test. When you

want to release a tool publicly, upload it to https://www.nuget.org. Once the tool is available on NuGet, developers
can perform a user-wide installation of the tool using the --global option of the dotnet tool install command.

Now that you have a package, install the tool from that package:

The --add-source parameter tells the .NET Core CLI to temporarily use the ./nupkg folder (our
<PackageOutputPath> folder) as an additional source feed for NuGet packages. For more information about

installing Global Tools, see .NET Core Global Tools overview.

If installation is successful, a message is displayed showing the command used to call the tool and the version
installed, similar to the following example:

You should now be able to type botsay and get a response from the tool.

https://www.nuget.org

NOTE

Remove the tool

dotnet tool uninstall -g botsay

If the install was successful, but you cannot use the botsay command, you may need to open a new terminal to refresh the
PATH.

Once you're done experimenting with the tool, you can remove it with the following command:

Troubleshoot .NET Core tool usage issues
10/15/2019 • 6 minutes to read • Edit Online

Installed .NET Core tool fails to run

Executable file not found

Could not execute because the specified command or file was not found.
Possible reasons for this include:
 * You misspelled a built-in dotnet command.
 * You intended to execute a .NET Core program, but dotnet-xyz does not exist.
 * You intended to run a global tool, but a dotnet-prefixed executable with this name could not be found on
the PATH.

EXECUTABLE NAME FORMAT INVOCATION FORMAT

dotnet-<toolName>.exe dotnet <toolName>

<toolName>.exe <toolName>

You might come across issues when trying to install or run a .NET Core tool, which can be a global tool or a local
tool. This article describes the common root causes and some possible solutions.

When a .NET Core tool fails to run, most likely you ran into one of the following issues:

The executable file for the tool wasn't found.
The correct version of the .NET Core runtime wasn't found.

If the executable file isn't found, you'll see a message similar to the following:

The name of the executable determines how you invoke the tool. The following table describes the format:

OS PATH

Linux/macOS $HOME/.dotnet/tools

Windows %USERPROFILE%\.dotnet\tools

Global tools

Global tools can be installed in the default directory or in a specific location. The default directories are:

If you're trying to run a global tool, check that the PATH environment variable on your machine contains the
path where you installed the global tool and that the executable is in that path.

The .NET Core CLI tries to add the default locations to the PATH environment variable on its first usage.
However, there are a couple of scenarios where the location might not be added to PATH automatically, so
you'll have to edit PATH to configure it for the following cases:

If you're using Linux and you've installed the .NET Core SDK using .tar.gz files and not apt-get or rpm.
If you're using macOS 10.15 "Catalina" or later versions.
If you're using macOS 10.14 "Mojave" or earlier versions, and you've installed the .NET Core SDK using

https://github.com/dotnet/docs/blob/master/docs/core/tools/troubleshoot-usage-issues.md

Runtime not found

dotnet --list-runtimes
dotnet --info

..\<toolDirectory>\dotnet-<toolName>

.tar.gz files and not .pkg.
If you've installed the .NET Core 3.0 SDK and you've set the DOTNET_ADD_GLOBAL_TOOLS_TO_PATH
environment variable to false .
If you've installed .NET Core 2.2 SDK or earlier versions, and you've set the
DOTNET_SKIP_FIRST_TIME_EXPERIENCE environment variable to true .

For more information about global tools, see .NET Core Global Tools overview.

Local tools

If you're trying to run a local tool, verify that there's a manifest file called dotnet-tools.json in the current
directory or any of its parent directories. This file can also live under a folder named .config anywhere in the
project folder hierarchy, instead of the root folder. If dotnet-tools.json exists, open it and check for the tool
you're trying to run. If the file doesn't contain an entry for "isRoot": true , then also check further up the
file hierarchy for additional tool manifest files.

If you're trying to run a .NET Core tool that was installed with a specified path, you need to include that path
when using the tool. An example of using a tool-path installed tool is:

.NET Core tools are framework-dependent applications, which means they rely on a .NET Core runtime installed
on your machine. If the expected runtime isn't found, they follow normal .NET Core runtime roll-forward rules
such as:

An application rolls forward to the highest patch release of the specified major and minor version.
If there's no matching runtime with a matching major and minor version number, the next higher minor version
is used.
Roll forward doesn't occur between preview versions of the runtime or between preview versions and release
versions. So, .NET Core tools created using preview versions must be rebuilt and republished by the author and
reinstalled.

Roll-forward won't occur by default in two common scenarios:

Only lower versions of the runtime are available. Roll-forward only selects later versions of the runtime.
Only higher major versions of the runtime are available. Roll-forward doesn't cross major version boundaries.

If an application can't find an appropriate runtime, it fails to run and reports an error.

You can find out which .NET Core runtimes are installed on your machine using one of the following commands:

If you think the tool should support the runtime version you currently have installed, you can contact the tool
author and see if they can update the version number or multi-target. Once they've recompiled and republished
their tool package to NuGet with an updated version number, you can update your copy. While that doesn't
happen, the quickest solution for you is to install a version of the runtime that would work with the tool you're
trying to run. To download a specific .NET Core runtime version, visit the .NET Core download page.

If you install the .NET Core SDK to a non-default location, you need to set the environment variable DOTNET_ROOT

to the directory that contains the dotnet executable.

https://dotnet.microsoft.com/download/dotnet-core

.NET Core tool installation fails

Tool '{0}' failed to install. This failure may have been caused by:

* You are attempting to install a preview release and did not use the --version option to specify the version.
* A package by this name was found, but it was not a .NET Core tool.
* The required NuGet feed cannot be accessed, perhaps because of an Internet connection problem.
* You mistyped the name of the tool.

For more reasons, including package naming enforcement, visit https://aka.ms/failure-installing-tool

Package naming enforcement

dotnet tool install -g Microsoft.<toolName>
dotnet tool install -g <toolName>

Preview releases

dotnet tool install -g --version 1.1.0-pre <toolName>

NOTE

Package isn't a .NET Core tool

NuGet feed can't be accessed

There are a number of reasons the installation of a .NET Core global or local tool may fail. When the tool
installation fails, you'll see a message similar to following one:

To help diagnose these failures, NuGet messages are shown directly to the user, along with the previous message.
The NuGet message may help you identify the problem.

Microsoft has changed its guidance on the Package ID for tools, resulting in a number of tools not being found
with the predicted name. The new guidance is that all Microsoft tools be prefixed with "Microsoft." This prefix is
reserved and can only be used for packages signed with a Microsoft authorized certificate.

During the transition, some Microsoft tools will have the old form of the package ID, while others will have the
new form:

As package IDs are updated, you'll need to change to the new package ID to get the latest updates. Packages with
the simplified tool name will be deprecated.

You're attempting to install a preview release and didn't use the --version option to specify the version.

.NET Core tools that are in preview must be specified with a portion of the name to indicate that they are in
preview. You don't need to include the entire preview. Assuming the version numbers are in the expected format,
you can use something like the following example:

The .NET Core CLI team is planning to add a --preview switch in a future release to make this easier.

A NuGet package by this name was found, but it wasn't a .NET Core tool.

If you try to install a NuGet package that is a regular NuGet package and not a .NET Core tool, you'll see an error
similar to the following:

NU1212: Invalid project-package combination for <ToolName> . DotnetToolReference project style can only
contain references of the DotnetTool type.

Package ID incorrect

See also

The required NuGet feed can't be accessed, perhaps because of an Internet connection problem.

Tool installation requires access to the NuGet feed that contains the tool package. It fails if the feed isn't available.
You can alter feeds with nuget.config , request a specific nuget.config file, or specify additional feeds with the
--add-source switch. By default, NuGet throws an error for any feed that can't connect. The flag
--ignore-failed-sources can skip these non-reachable sources.

You mistyped the name of the tool.

A common reason for failure is that the tool name isn't correct. This can happen because of mistyping, or because
the tool has moved or been deprecated. For tools on NuGet.org, one way to ensure you have the name correct is to
search for the tool at NuGet.org and copy the installation command.

.NET Core Global Tools overview

Elevated access for dotnet commands
9/24/2019 • 4 minutes to read • Edit Online

Global tool installation

Install the global tool

dotnet tool install PACKAGEID --tool-path "%ProgramFiles%\dotnet-tools".

Run the global tool

Software development best practices guide developers to writing software that requires the least amount of
privilege. However, some software, like performance monitoring tools, requires admin permission because of
operating system rules. The following guidance describes supported scenarios for writing such software with .NET
Core.

The following commands can be run elevated:

dotnet tool commands, such as dotnet tool install.
dotnet run --no-build

We don't recommend running other commands elevated. In particular, we don't recommend elevation with
commands that use MSBuild, such as dotnet restore, dotnet build, and dotnet run. The primary issue is permission
management problems when a user transitions back and forth between root and a restricted account after issuing
dotnet commands. You may find as a restricted user that you don't have access to the file built by a root user. There
are ways to resolve this situation, but they're unnecessary to get into in the first place.

You can run commands as root as long as you don’t transition back and forth between root and a restricted
account. For example, Docker containers run as root by default, so they have this characteristic.

The following instructions demonstrate the recommended way to install, run, and uninstall .NET Core tools that
require elevated permissions to execute.

Windows
Linux
macOS

If the folder %ProgramFiles%\dotnet-tools already exists, do the following to check whether the "Users" group has
permission to write or modify that directory:

Right-click the %ProgramFiles%\dotnet-tools folder and select Properties. The Common Properties dialog box
opens.
Select the Security tab. Under Group or user names, check whether the “Users” group has permission to write
or modify the directory.
If the "Users" group can write or modify the directory, use a different directory name when installing the tools
rather than dotnet-tools.

To install tools, run the following command in elevated prompt. It will create the dotnet-tools folder during the
installation.

Option 1 Use the full path with elevated prompt:

https://github.com/dotnet/docs/blob/master/docs/core/tools/elevated-access.md

"%ProgramFiles%\dotnet-tools\TOOLCOMMAND"

setx Path "%Path%;%ProgramFiles%\dotnet-tools\"

TOOLCOMMAND

Uninstall the global tool

dotnet tool uninstall PACKAGEID --tool-path "%ProgramFiles%\dotnet-tools"

Local tools

Elevation during development

See also

Option 2 Add the newly created folder to %Path% . You only need to do this operation once.

And run with:

In an elevated prompt, type the following command:

Local tools are scoped per subdirectory tree, per user. When run elevated, local tools share a restricted user
environment to the elevated environment. In Linux and macOS, this results in files being set with root user-only
access. If the user switches back to a restricted account, the user can no longer access or write to the files. So
installing tools that require elevation as local tools isn't recommended. Instead, use the --tool-path option and the
previous guidelines for global tools.

During development, you may need elevated access to test your application. This scenario is common for IoT apps,
for example. We recommend that you build the application without elevation and then run it with elevation. There
are a few patterns, as follows:

dotnet build
sudo ./bin/Debug/netcoreapp3.0/APPLICATIONNAME

dotnet build
sudo dotnet run --no-build

Using generated executable (it provides the best startup performance):

Using the dotnet run command with the —no-build flag to avoid generating new binaries:

.NET Core Global Tools overview

.NET Core CLI tools extensibility model
8/14/2019 • 8 minutes to read • Edit Online

How to extend CLI tools

Per-project based extensibility

Consuming per-project tools

NOTE

This document covers the different ways you can extend the .NET Core Command-line Interface (CLI) tools and
explain the scenarios that drive each one of them. You'll see how to consume the tools as well as how to build the
different types of tools.

The CLI tools can be extended in three main ways:

1. Via NuGet packages on a per-project basis

Per-project tools are contained within the project's context, but they allow easy installation through
restoration.

2. Via NuGet packages with custom targets

Custom targets allow you to easily extend the build process with custom tasks.

3. Via the system's PATH

PATH-based tools are good for general, cross-project tools that are usable on a single machine.

The three extensibility mechanisms outlined above are not exclusive. You can use one, or all, or a combination of
them. Which one to pick depends largely on the goal you are trying to achieve with your extension.

Per-project tools are framework-dependent deployments that are distributed as NuGet packages. Tools are only
available in the context of the project that references them and for which they are restored. Invocation outside of
the context of the project (for example, outside of the directory that contains the project) will fail because the
command cannot be found.

These tools are perfect for build servers, since nothing outside of the project file is needed. The build process runs
restore for the project it builds and tools will be available. Language projects, such as F#, are also in this category
since each project can only be written in one specific language.

Finally, this extensibility model provides support for creation of tools that need access to the built output of the
project. For instance, various Razor view tools in ASP.NET MVC applications fall into this category.

Consuming these tools requires you to add a <DotNetCliToolReference> element to your project file for each tool
you want to use. Inside the <DotNetCliToolReference> element, you reference the package in which the tool resides
and specify the version you need. After running dotnet restore , the tool and its dependencies are restored.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

https://github.com/dotnet/docs/blob/master/docs/core/tools/extensibility.md
https://www.asp.net/
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 </PropertyGroup>

 <!-- The tools reference -->
 <ItemGroup>
 <DotNetCliToolReference Include="dotnet-api-search" Version="1.0.0" />
 </ItemGroup>
</Project>

Building tools

NOTE

Custom targets

For tools that need to load the build output of the project for execution, there is usually another dependency which
is listed under the regular dependencies in the project file. Since CLI uses MSBuild as its build engine, we
recommend that these parts of the tool be written as custom MSBuild targets and tasks, since they can then take
part in the overall build process. Also, they can get any and all data easily that is produced via the build, such as the
location of the output files, the current configuration being built, and so on. All this information becomes a set of
MSBuild properties that can be read from any target. You can see how to add a custom target using NuGet later in
this document.

Let's review an example of adding a simple tools-only tool to a simple project. Given an example command called
dotnet-api-search that allows you to search through the NuGet packages for the specified API, here is a console

application's project file that uses that tool:

The <DotNetCliToolReference> element is structured in a similar way as the <PackageReference> element. It needs
the package ID of the package containing the tool and its version to be able to restore.

As mentioned, tools are just portable console applications. You build tools as you would build any other console
application. After you build it, you use the dotnet pack command to create a NuGet package (.nupkg file) that
contains your code, information about its dependencies, and so on. You can give any name to the package, but the
application inside, the actual tool binary, has to conform to the convention of dotnet-<command> in order for
dotnet to be able to invoke it.

In pre-RC3 versions of the .NET Core command-line tools, the dotnet pack command had a bug that caused the
.runtimeconfig.json to not be packed with the tool. Lacking that file results in errors at runtime. If you encounter this
behavior, be sure to update to the latest tooling and try the dotnet pack again.

Since tools are portable applications, the user consuming the tool must have the version of the .NET Core libraries
that the tool was built against in order to run the tool. Any other dependency that the tool uses and that is not
contained within the .NET Core libraries is restored and placed in the NuGet cache. The entire tool is, therefore,
run using the assemblies from the .NET Core libraries as well as assemblies from the NuGet cache.

These kinds of tools have a dependency graph that is completely separate from the dependency graph of the
project that uses them. The restore process first restores the project's dependencies and then restores each of the
tools and their dependencies.

You can find richer examples and different combinations of this in the .NET Core CLI repo. You can also see the
implementation of tools used in the same repo.

NuGet has the capability to package custom MSBuild targets and props files. With the move of the .NET Core CLI

https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets
https://docs.microsoft.com/visualstudio/msbuild/msbuild-tasks
https://github.com/dotnet/cli/tree/release/2.1/TestAssets/TestProjects
https://github.com/dotnet/cli/tree/release/2.1/TestAssets/TestPackages
https://docs.microsoft.com/nuget/create-packages/creating-a-package#include-msbuild-props-and-targets-in-a-package

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <Description>Sample Packer</Description>
 <VersionPrefix>0.1.0-preview</VersionPrefix>
 <TargetFramework>netstandard1.3</TargetFramework>
 <DebugType>portable</DebugType>
 <AssemblyName>SampleTargets.PackerTarget</AssemblyName>
 </PropertyGroup>
 <ItemGroup>
 <EmbeddedResource Include="Resources\Pkg\dist-template.xml;compiler\resources***"
Exclude="bin**;obj**;***.xproj;packages**" />
 <None Include="build\SampleTargets.PackerTarget.targets" />
 </ItemGroup>
 <ItemGroup Label="dotnet pack instructions">
 <Content Include="build*.targets">
 <Pack>true</Pack>
 <PackagePath>build\</PackagePath>
 </Content>
 </ItemGroup>
 <Target Name="CollectRuntimeOutputs" BeforeTargets="_GetPackageFiles">
 <!-- Collect these items inside a target that runs after build but before packaging. -->
 <ItemGroup>
 <Content Include="$(OutputPath)*.dll;$(OutputPath)*.json">
 <Pack>true</Pack>
 <PackagePath>build\</PackagePath>
 </Content>
 </ItemGroup>
 </Target>
 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.DependencyModel" Version="1.0.1-beta-000933"/>
 <PackageReference Include="Microsoft.Build.Framework" Version="0.1.0-preview-00028-160627" />
 <PackageReference Include="Microsoft.Build.Utilities.Core" Version="0.1.0-preview-00028-160627" />
 <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
 </ItemGroup>
 <ItemGroup />
 <PropertyGroup Label="Globals">
 <ProjectGuid>463c66f0-921d-4d34-8bde-7c9d0bffaf7b</ProjectGuid>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(TargetFramework)' == 'netstandard1.3' ">
 <DefineConstants>$(DefineConstants);NETSTANDARD1_3</DefineConstants>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)' == 'Release' ">
 <DefineConstants>$(DefineConstants);RELEASE</DefineConstants>
 </PropertyGroup>
</Project>

tools to use MSBuild, the same mechanism of extensibility now applies to .NET Core projects. You would use this
type of extensibility when you want to extend the build process, or when you want to access any of the artifacts in
the build process, such as generated files, or you want to inspect the configuration under which the build is
invoked, and so on.

In the following example, you can see the target's project file using the csproj syntax. This instructs the
dotnet pack command what to package, placing the targets files as well as the assemblies into the build folder

inside the package. Notice the <ItemGroup> element that has the Label property set to dotnet pack instructions ,
and the Target defined beneath it.

Consuming custom targets is done by providing a <PackageReference> that points to the package and its version
inside the project that is being extended. Unlike the tools, the custom targets package does get included into the
consuming project's dependency closure.

Using the custom target depends solely on how you configure it. Since it's an MSBuild target, it can depend on a
given target, run after another target and can also be manually invoked using the dotnet msbuild -t:<target-name>

command.

 PATH-based extensibility

#!/bin/bash

echo "Hello World!"

echo "Hello World"

However, if you want to provide a better user experience to your users, you can combine per-project tools and
custom targets. In this scenario, the per-project tool would essentially just accept whatever needed parameters and
would translate that into the required dotnet msbuild invocation that would execute the target. You can see a
sample of this kind of synergy on the MVP Summit 2016 Hackathon samples repo in the dotnet-packer project.

PATH-based extensibility is usually used for development machines where you need a tool that conceptually
covers more than a single project. The main drawback of this extension mechanism is that it's tied to the machine
where the tool exists. If you need it on another machine, you would have to deploy it.

This pattern of CLI toolset extensibility is very simple. As covered in the .NET Core CLI overview, dotnet driver
can run any command that is named after the dotnet-<command> convention. The default resolution logic first
probes several locations and finally falls back to the system PATH. If the requested command exists in the system
PATH and is a binary that can be invoked, dotnet driver will invoke it.

The file must be executable. On Unix systems, this means anything that has the execute bit set via chmod +x . On
Windows, you can use cmd files.

Let's take a look at the very simple implementation of a "Hello World" tool. We will use both bash and cmd on
Windows. The following command will simply echo "Hello World" to the console.

On macOS, we can save this script as dotnet-hello and set its executable bit with chmod +x dotnet-hello . We can
then create a symbolic link to it in /usr/local/bin using the command
ln -s <full_path>/dotnet-hello /usr/local/bin/ . This will make it possible to invoke the command using the
dotnet hello syntax.

On Windows, we can save this script as dotnet-hello.cmd and put it in a location that is in a system path (or you
can add it to a folder that is already in the path). After this, you can just use dotnet hello to run this example.

https://github.com/dotnet/MVPSummitHackathon2016
https://github.com/dotnet/MVPSummitHackathon2016/tree/master/dotnet-packer

Custom templates for dotnet new
11/1/2019 • 9 minutes to read • Edit Online

.NET default templates

dotnet new --list

Configuration

Source files and folders

The .NET Core SDK comes with many templates already installed and ready for you to use. The dotnet new

command isn't only the way to use a template, but also how to install and uninstall templates. Starting with .NET
Core 2.0, you can create your own custom templates for any type of project, such as an app, service, tool, or class
library. You can even create a template that outputs one or more independent files, such as a configuration file.

You can install custom templates from a NuGet package on any NuGet feed, by referencing a NuGet .nupkg file
directly, or by specifying a file system directory that contains the template. The template engine offers features
that allow you to replace values, include and exclude files, and execute custom processing operations when your
template is used.

The template engine is open source, and the online code repository is at dotnet/templating on GitHub. Visit the
dotnet/dotnet-template-samples repo for samples of templates. More templates, including templates from third
parties, are found at Available templates for dotnet new on GitHub. For more information about creating and
using custom templates, see How to create your own templates for dotnet new and the dotnet/templating GitHub
repo Wiki.

To follow a walkthrough and create a template, see the Create a custom template for dotnet new tutorial.

When you install the .NET Core SDK, you receive over a dozen built-in templates for creating projects and files,
including console apps, class libraries, unit test projects, ASP.NET Core apps (including Angular and React
projects), and configuration files. To list the built-in templates, run the dotnet new command with the -l|--list

option:

A template is composed of the following parts:

Source files and folders.
A configuration file (template.json).

The source files and folders include whatever files and folders you want the template engine to use when the
dotnet new <TEMPLATE> command is run. The template engine is designed to use runnable projects as source code

to produce projects. This has several benefits:

The template engine doesn't require you to inject special tokens into your project's source code.
The code files aren't special files or modified in any way to work with the template engine. So, the tools you
normally use when working with projects also work with template content.
You build, run, and debug your template projects just like you do for any of your other projects.
You can quickly create a template from an existing project just by adding a ./.template.config/template.json
configuration file to the project.

Files and folders stored in the template aren't limited to formal .NET project types. Source files and folders may
consist of any content that you wish to create when the template is used, even if the template engine produces just

https://github.com/dotnet/docs/blob/master/docs/core/tools/custom-templates.md
https://dotnet.microsoft.com/download
https://github.com/dotnet/templating/
https://github.com/dotnet/dotnet-template-samples
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://devblogs.microsoft.com/dotnet/how-to-create-your-own-templates-for-dotnet-new/
https://github.com/dotnet/templating/wiki
https://dotnet.microsoft.com/download
https://angular.io/
https://facebook.github.io/react/

template.json

MEMBER TYPE DESCRIPTION

$schema URI The JSON schema for the template.json
file. Editors that support JSON schemas
enable JSON-editing features when the
schema is specified. For example, Visual
Studio Code requires this member to
enable IntelliSense. Use a value of
http://json.schemastore.org/template

.

author string The author of the template.

classifications array(string) Zero or more characteristics of the
template that a user might use to find
the template when searching for it. The
classifications also appear in the Tags
column when it appears in a list of
templates produced by using the
dotnet new -l|--list command.

identity string A unique name for this template.

name string The name for the template that users
should see.

shortName string A default shorthand name for selecting
the template that applies to
environments where the template
name is specified by the user, not
selected via a GUI. For example, the
short name is useful when using
templates from a command prompt
with CLI commands.

Example

one file as its output.

Files generated by the template can be modified based on logic and settings you've provided in the template.json
configuration file. The user can override these settings by passing options to the dotnet new <TEMPLATE>

command. A common example of custom logic is providing a name for a class or variable in the code file that's
deployed by a template.

The template.json file is placed in a .template.config folder in the root directory of the template. The file provides
configuration information to the template engine. The minimum configuration requires the members shown in
the following table, which is sufficient to create a functional template.

The full schema for the template.json file is found at the JSON Schema Store. For more information about the
template.json file, see the dotnet templating wiki.

For example, here is a template folder that contains two content files: console.cs and readme.txt. Take notice that
there is the required folder named .template.config that contains the template.json file.

https://code.visualstudio.com/
http://json.schemastore.org/template
https://github.com/dotnet/templating/wiki

└───mytemplate
 │ console.cs
 │ readme.txt
 │
 └───.template.config
 template.json

{
 "$schema": "http://json.schemastore.org/template",
 "author": "Travis Chau",
 "classifications": ["Common", "Console"],
 "identity": "AdatumCorporation.ConsoleTemplate.CSharp",
 "name": "Adatum Corporation Console Application",
 "shortName": "adatumconsole"
}

Packing a template into a NuGet package (nupkg file)

The template.json file looks like the following:

The mytemplate folder is an installable template pack. Once the pack is installed, the shortName can be used with
the dotnet new command. For example, dotnet new adatumconsole would output the console.cs and readme.txt

files to the current folder.

A custom template is packed with the dotnet pack command and a .csproj file. Alternatively, NuGet can be used
with the nuget pack command along with a .nuspec file. However, NuGet requires the .NET Framework on
Windows and Mono on Linux and MacOS.

The .csproj file is slightly different from a traditional code-project .csproj file. Note the following settings:

1. The <PackageType> setting is added and set to Template .
2. The <PackageVersion> setting is added and set to a valid NuGet version number.
3. The <PackageId> setting is added and set to a unique identifier. This identifier is used to uninstall the template

pack and is used by NuGet feeds to register your template pack.
4. Generic metadata settings should be set: <Title> , <Authors> , <Description> , and <PackageTags> .
5. The <TargetFramework> setting must be set, even though the binary produced by the template process isn't

used. In the example below it's set to netstandard2.0 .

A template pack, in the form of a .nupkg NuGet package, requires that all templates be stored in the content folder
within the package. There are a few more settings to add to a .csproj file to ensure that the generated .nupkg can
be installed as a template pack:

1. The <IncludeContentInPack> setting is set to true to include any file the project sets as content in the NuGet
package.

2. The <IncludeBuildOutput> setting is set to false to exclude all binaries generated by the compiler from the
NuGet package.

3. The <ContentTargetFolders> setting is set to content . This makes sure that the files set as content are stored
in the content folder in the NuGet package. This folder in the NuGet package is parsed by the dotnet template
system.

An easy way to exclude all code files from being compiled by your template project is by using the
<Compile Remove="***" /> item in your project file, inside an <ItemGroup> element.

An easy way to structure your template pack is to put all templates in individual folders, and then each template
folder inside of a templates folder that is located in the same directory as your .csproj file. This way, you can use a

https://docs.microsoft.com/nuget/tools/nuget-exe-cli-reference
https://docs.microsoft.com/nuget/tools/cli-ref-pack
https://www.mono-project.com/
https://docs.microsoft.com/nuget/reference/package-versioning

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <PackageType>Template</PackageType>
 <PackageVersion>1.0</PackageVersion>
 <PackageId>AdatumCorporation.Utility.Templates</PackageId>
 <Title>AdatumCorporation Templates</Title>
 <Authors>Me</Authors>
 <Description>Templates to use when creating an application for Adatum Corporation.</Description>
 <PackageTags>dotnet-new;templates;contoso</PackageTags>
 <TargetFramework>netstandard2.0</TargetFramework>

 <IncludeContentInPack>true</IncludeContentInPack>
 <IncludeBuildOutput>false</IncludeBuildOutput>
 <ContentTargetFolders>content</ContentTargetFolders>
 </PropertyGroup>

 <ItemGroup>
 <Content Include="templates***" Exclude="templates**\bin**;templates**\obj**" />
 <Compile Remove="***" />
 </ItemGroup>

</Project>

project_folder
│ MyDotnetTemplates.csproj
│
└───templates
 ├───mytemplate1
 │ │ console.cs
 │ │ readme.txt
 │ │
 │ └───.template.config
 │ template.json
 │
 └───mytemplate2
 │ otherfile.cs
 │
 └───.template.config
 template.json

Installing a template

To install a template from a NuGet package stored at nuget.org

single project item to include all files and folders in the templates as content. Inside of an <ItemGroup> element,
create a <Content Include="templates***" Exclude="templates**\bin**;templates**\obj**" /> item.

Here is an example .csproj file that follows all of the guidelines above. It packs the templates child folder to the
content package folder and excludes any code file from being compiled.

The example below demonstrates the file and folder structure of using a .csproj to create a template pack. The
MyDotnetTemplates.csproj file and templates folder are both located at the root of a directory named
project_folder. The templates folder contains two templates, mytemplate1 and mytemplate2. Each template has
content files and a .template.config folder with a template.json config file.

Use the dotnet new -i|--install command to install a package.

Use the NuGet package identifier to install a template package.

dotnet new -i <NUGET_PACKAGE_ID>

To install a template from a local nupkg file

dotnet new -i <PATH_TO_NUPKG_FILE>

To install a template from a file system directory

dotnet new -i <FILE_SYSTEM_DIRECTORY>

Get a list of installed templates

dotnet new -u

Template Instantiation Commands for .NET Core CLI

Currently installed items:
 Microsoft.DotNet.Common.ItemTemplates
 Templates:
 global.json file (globaljson)
 NuGet Config (nugetconfig)
 Solution File (sln)
 Dotnet local tool manifest file (tool-manifest)
 Web Config (webconfig)
 Microsoft.DotNet.Common.ProjectTemplates.3.0
 Templates:
 Class library (classlib) C#
 Class library (classlib) F#
 Class library (classlib) VB
 Console Application (console) C#
 Console Application (console) F#
 Console Application (console) VB
...

Uninstalling a template

Provide the path to a .nupkg NuGet package file.

Templates can be installed from a template folder, such as the mytemplate1 folder from the example above.
Specify the folder path of the .template.config folder. The path to the template directory does not need to be
absolute. However, an absolute path is required to uninstall a template that is installed from a folder.

The uninstall command, without any other parameters, will list all installed templates.

That command returns something similar to the following output:

The first level of items after Currently installed items: are the identifiers used in uninstalling a template. And in
the example above, Microsoft.DotNet.Common.ItemTemplates and Microsoft.DotNet.Common.ProjectTemplates.3.0 are
listed. If the template was installed by using a file system path, this identifier will the folder path of the
.template.config folder.

Use the dotnet new -u|--uninstall command to uninstall a package.

If the package was installed by either a NuGet feed or by a .nupkg file directly, provide the identifier.

dotnet new -u <NUGET_PACKAGE_ID>

dotnet new -u <ABSOLUTE_FILE_SYSTEM_DIRECTORY>

Create a project using a custom template

dotnet new <TEMPLATE>

See also

If the package was installed by specifying a path to the .template.config folder, use that absolute path to uninstall
the package. You can see the absolute path of the template in the output provided by the dotnet new -u

command. For more information, see the Get a list of installed templates section above.

After a template is installed, use the template by executing the dotnet new <TEMPLATE> command as you would
with any other pre-installed template. You can also specify options to the dotnet new command, including
template-specific options you configured in the template settings. Supply the template's short name directly to the
command:

Create a custom template for dotnet new (tutorial)
dotnet/templating GitHub repo Wiki
dotnet/dotnet-template-samples GitHub repo
How to create your own templates for dotnet new
template.json schema at the JSON Schema Store

https://github.com/dotnet/templating/wiki
https://github.com/dotnet/dotnet-template-samples
https://devblogs.microsoft.com/dotnet/how-to-create-your-own-templates-for-dotnet-new/
http://json.schemastore.org/template

How to enable TAB completion for .NET Core CLI
11/7/2019 • 2 minutes to read • Edit Online

> dotnet complete "dotnet a"
add
clean
--diagnostics
migrate
pack

Examples

INPUT BECOMES BECAUSE

dotnet a⇥ dotnet add add is the first subcommand,
alphabetically.

dotnet add p⇥ dotnet add --help Tab completion matches substrings and
--help comes first alphabetically.

dotnet add p⇥⇥ dotnet add package Pressing tab a second time brings up
the next suggestion.

dotnet add package Microsoft⇥ dotnet add package
Microsoft.ApplicationInsights.Web

Results are returned alphabetically.

dotnet remove reference ⇥ dotnet remove reference
..\..\src\OmniSharp.DotNet\OmniSharp.DotNet.csproj

Tab completion is project file aware.

PowerShell

Starting with .NET Core 2.0 SDK, the .NET Core CLI supports tab completion. This article describes how to
configure tab completion for three shells, PowerShell, Bash, and zsh. Other shells may have support for auto
completion. Refer to their documentation on how to configure auto completion, the steps should be similar to the
steps described in this article.

This article applies to: ✓ .NET Core 2.x SDK

Once setup, tab completion for the .NET Core CLI is triggered by typing a dotnet command in the shell, and then
pressing the TAB key. The current command line is sent to the dotnet complete command, and the results are
processed by your shell. You can test the results without enabling tab completion by sending something directly to
the dotnet complete command. For example:

If that command doesn't work, make sure that .NET Core 2.0 SDK or above is installed. If it's installed, but that
command still doesn't work, make sure that the dotnet command resolves to a version of .NET Core 2.0 SDK and
above. Use the dotnet --version command to see what version of dotnet your current path is resolving to. For
more information, see Select the .NET Core version to use.

Here are some examples of what tab completion provides:

To add tab completion to PowerShell for the .NET Core CLI, create or edit the profile stored in the variable
$PROFILE . For more information, see How to create your profile and Profiles and execution policy.

https://github.com/dotnet/docs/blob/master/docs/core/tools/enable-tab-autocomplete.md
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_profiles#how-to-create-a-profile
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_profiles#profiles-and-execution-policy

PowerShell parameter completion shim for the dotnet CLI
Register-ArgumentCompleter -Native -CommandName dotnet -ScriptBlock {
 param($commandName, $wordToComplete, $cursorPosition)
 dotnet complete --position $cursorPosition "$wordToComplete" | ForEach-Object {
 [System.Management.Automation.CompletionResult]::new($_, $_, 'ParameterValue', $_)
 }
 }

bash

bash parameter completion for the dotnet CLI

_dotnet_bash_complete()
{
 local word=${COMP_WORDS[COMP_CWORD]}

 local completions
 completions="$(dotnet complete --position "${COMP_POINT}" "${COMP_LINE}" 2>/dev/null)"
 if [$? -ne 0]; then
 completions=""
 fi

 COMPREPLY=($(compgen -W "$completions" -- "$word"))
}

complete -f -F _dotnet_bash_complete dotnet

zsh

zsh parameter completion for the dotnet CLI

_dotnet_zsh_complete()
{
 local completions=("$(dotnet complete "$words")")

 reply=("${(ps:\n:)completions}")
}

compctl -K _dotnet_zsh_complete dotnet

Add the following code to your profile:

To add tab completion to your bash shell for the .NET Core CLI, add the following code to your .bashrc file:

To add tab completion to your zsh shell for the .NET Core CLI, add the following code to your .zshrc file:

.NET Core SDK telemetry
8/29/2019 • 5 minutes to read • Edit Online

Scope

How to opt out

Disclosure

Telemetry

The .NET Core tools collect usage data in order to help us improve your experience. The data is anonymous. It
is collected by Microsoft and shared with the community. You can opt-out of telemetry by setting the
DOTNET_CLI_TELEMETRY_OPTOUT environment variable to '1' or 'true' using your favorite shell.

Read more about .NET Core CLI Tools telemetry: https://aka.ms/dotnet-cli-telemetry

Data points

The .NET Core SDK includes a telemetry feature that collects usage data and exception information when the .NET
Core CLI crashes. The .NET Core CLI comes with the .NET Core SDK and is the set of verbs that enable you to
build, test, and publish your .NET Core apps. It's important that the .NET team understands how the tools are used
so they can be improved. Information on failures helps the team resolve problems and fix bugs.

The collected data is anonymous and published in aggregate under the Creative Commons Attribution License.

dotnet has two functions: to run apps, and to execute CLI commands. Telemetry isn't collected when using dotnet

to start an application in the following format:

dotnet [path-to-app].dll

Telemetry is collected when using any of the .NET Core CLI commands, such as:

dotnet build

dotnet pack

dotnet run

The .NET Core SDK telemetry feature is enabled by default. To opt out of the telemetry feature, set the
DOTNET_CLI_TELEMETRY_OPTOUT environment variable to 1 or true .

A single telemetry entry is also sent by the .NET Core SDK installer when a successful installation happens. To opt
out, set the DOTNET_CLI_TELEMETRY_OPTOUT environment variable before you install the .NET Core SDK.

The .NET Core SDK displays text similar to the following when you first run one of the .NET Core CLI commands
(for example, dotnet build). Text may vary slightly depending on the version of the SDK you're running. This "first
run" experience is how Microsoft notifies you about data collection.

The telemetry feature doesn't collect personal data, such as usernames or email addresses. It doesn't scan your
code and doesn't extract project-level data, such as name, repository, or author. The data is sent securely to
Microsoft servers using Azure Monitor technology, held under restricted access, and published under strict security
controls from secure Azure Storage systems.

https://github.com/dotnet/docs/blob/master/docs/core/tools/telemetry.md
https://creativecommons.org/licenses/by/4.0/
https://azure.microsoft.com/services/monitor/
https://azure.microsoft.com/services/storage/

SDK VERSIONS DATA

All Timestamp of invocation.

All Command invoked (for example, "build"), hashed starting in
2.1.

All Three octet IP address used to determine the geographical
location.

All Operating system and version.

All Runtime ID (RID) the SDK is running on.

All .NET Core SDK version.

All Telemetry profile: an optional value only used with explicit user
opt-in and used internally at Microsoft.

>=2.0 Command arguments and options: several arguments and
options are collected (not arbitrary strings). See collected
options. Hashed after 2.1.300.

>=2.0 Whether the SDK is running in a container.

>=2.0 Target frameworks (from the TargetFramework event),
hashed starting in 2.1.

>=2.0 Hashed Media Access Control (MAC) address: a
cryptographically (SHA256) anonymous and unique ID for a
machine.

>=2.0 Hashed current working directory.

>=2.0 Install success report, with hashed installer exe filename.

>=2.1.300 Kernel version.

>=2.1.300 Libc release/version.

>=3.0.100 Whether the output was redirected (true or false).

>=3.0.100 On a CLI/SDK crash, the exception type and its stack trace
(only CLI/SDK code is included in the stack trace sent). For
more information, see .NET Core CLI/SDK crash exception
telemetry collected.

Collected options

Protecting your privacy is important to us. If you suspect the telemetry is collecting sensitive data or the data is
being insecurely or inappropriately handled, file an issue in the dotnet/cli repository or send an email to
dotnet@microsoft.com for investigation.

The telemetry feature collects the following data:

Certain commands send additional data. A subset of commands sends the first argument:

https://github.com/dotnet/cli/issues
mailto:dotnet@microsoft.com

COMMAND FIRST ARGUMENT DATA SENT

dotnet help <arg> The command help is being queried for.

dotnet new <arg> The template name (hashed).

dotnet add <arg> The word package or reference .

dotnet remove <arg> The word package or reference .

dotnet list <arg> The word package or reference .

dotnet sln <arg> The word add , list , or remove .

dotnet nuget <arg> The word delete , locals , or push .

OPTION COMMANDS

--verbosity All commands

--language dotnet new

--configuration dotnet build , dotnet clean , dotnet publish ,
dotnet run , dotnet test

--framework dotnet build , dotnet clean , dotnet publish ,
dotnet run , dotnet test , dotnet vstest

--runtime dotnet build , dotnet publish

--platform dotnet vstest

--logger dotnet vstest

--sdk-package-version dotnet migrate

.NET Core CLI/SDK crash exception telemetry collected

Types of collected data

A subset of commands sends selected options if they're used, along with their values:

Except for --verbosity and --sdk-package-version , all the other values are hashed starting with .NET Core 2.1.100
SDK.

If the .NET Core CLI/SDK crashes, it collects the name of the exception and stack trace of the CLI/SDK code. This
information is collected to assess problems and improve the quality of the .NET Core SDK and CLI. This article
provides information about the data we collect. It also provides tips on how users building their own version of the
.NET Core SDK can avoid inadvertent disclosure of personal or sensitive information.

.NET Core CLI collects information for CLI/SDK exceptions only, not exceptions in your application. The collected
data contains the name of the exception and the stack trace. This stack trace is of CLI/SDK code.

System.IO.IOException
at System.ConsolePal.WindowsConsoleStream.Write(Byte[] buffer, Int32 offset, Int32 count)
at System.IO.StreamWriter.Flush(Boolean flushStream, Boolean flushEncoder)
at System.IO.StreamWriter.Write(Char[] buffer)
at System.IO.TextWriter.WriteLine()
at System.IO.TextWriter.SyncTextWriter.WriteLine()
at Microsoft.DotNet.Cli.Utils.Reporter.WriteLine()
at Microsoft.DotNet.Tools.Run.RunCommand.EnsureProjectIsBuilt()
at Microsoft.DotNet.Tools.Run.RunCommand.Execute()
at Microsoft.DotNet.Tools.Run.RunCommand.Run(String[] args)
at Microsoft.DotNet.Cli.Program.ProcessArgs(String[] args, ITelemetry telemetryClient)
at Microsoft.DotNet.Cli.Program.Main(String[] args)

Avoid inadvertent disclosure information

See also

The following example shows the kind of data that is collected:

.NET Core contributors and anyone else running a version of the .NET Core SDK that they built themselves should
consider the path to their SDK source code. If a crash occurs while using a .NET Core SDK that is a custom debug
build or configured with custom build symbol files, the SDK source file path from the build machine is collected as
part of the stack trace and isn't hashed.

Because of this, custom builds of the .NET Core SDK shouldn't be located in directories whose path names expose
personal or sensitive information.

.NET Core CLI Telemetry - 2019 Q2 Data
Telemetry reference source (dotnet/cli repository)

https://dotnet.microsoft.com/platform/telemetry/dotnet-core-cli-2019q2
https://github.com/dotnet/cli/tree/master/src/dotnet/Telemetry

global.json overview
9/19/2019 • 4 minutes to read • Edit Online

global.json schema
sdk

version

{
 "sdk": {
 "version": "2.2.100"
 }
}

global.json and the .NET Core CLI

dotnet --list-sdks

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

The global.json file allows you to define which .NET Core SDK version is used when you run .NET Core CLI
commands. Selecting the .NET Core SDK is independent from specifying the runtime your project targets. The
.NET Core SDK version indicates which versions of the .NET Core CLI tools are used. In general, you want to use
the latest version of the tools, so no global.json file is needed.

For more information about specifying the runtime instead, see Target frameworks.

.NET Core SDK looks for a global.json file in the current working directory (which isn't necessarily the same as the
project directory) or one of its parent directories.

Type: Object

Specifies information about the .NET Core SDK to select.

Type: String

The version of the .NET Core SDK to use.

Note that this field:

Doesn't have globbing support, that is, the full version number has to be specified.
Doesn't support version ranges.

The following example shows the contents of a global.json file:

It's helpful to know which versions are available in order to set one in the global.json file. You can find the full list
of supported available SDKs at the Download .NET Core page. Starting with .NET Core 2.1 SDK, you can run the
following command to verify which SDK versions are already installed on your machine:

To install additional .NET Core SDK versions on your machine, visit the Download .NET Core page.

You can create a new the global.json file in the current directory by executing the dotnet new command, similar to
the following example:

https://github.com/dotnet/docs/blob/master/docs/core/tools/global-json.md
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core

dotnet new globaljson --sdk-version 2.2.100

Matching rules

NOTE

Troubleshooting build warnings

WARNING

The matching rules are governed by the apphost, which is part of the .NET Core runtime. The latest version of the host is
used when you have multiple runtimes installed side-by-side.

Starting with .NET Core 2.0, the following rules apply when determining which version of the SDK to use:

If no global.json file is found or global.json doesn't specify an SDK version, the latest installed SDK version is
used. Latest SDK version can be either release or pre-release - the highest version number wins.
If global.json does specify an SDK version:

If the specified SDK version is found on the machine, that exact version is used.
If the specified SDK version can't be found on the machine, the latest installed SDK patch version of
that version is used. Latest installed SDK patch version can be either release or pre-release - the
highest version number wins. In .NET Core 2.1 and higher, the patch versions lower than the patch
version specified are ignored in the SDK selection.
If the specified SDK version and an appropriate SDK patch version can't be found, an error is thrown.

The SDK version is currently composed of the following parts:

[.NET Core major version].[.NET Core minor version].[xyz][-optional preview name]

The feature release of the .NET Core SDK is represented by the first digit (x) in the last portion of the number (
xyz) for SDK versions 2.1.100 and higher. In general, the .NET Core SDK has a faster release cycle than .NET

Core.

The patch version is defined by the last two digits (yz) in the last portion of the number (xyz) for SDK versions
2.1.100 and higher. For example, if you specify 2.1.300 as the SDK version, SDK selection finds up to 2.1.399

but 2.1.400 isn't considered a patch version for 2.1.300 .

.NET Core SDK versions 2.1.100 through 2.1.201 were released during the transition between version number
schemes and don't correctly handle the xyz notation. We highly recommend if you specify these versions in the
global.json file, that you ensure the specified versions are on the target machines.

With .NET Core SDK 1.x, if you specified a version and no exact match was found, the latest installed SDK version
was used. Latest SDK version can be either release or pre-release - the highest version number wins.

You are working with a preview version of the .NET Core SDK. You can define the SDK version via a global.json file in the
current project. More at https://go.microsoft.com/fwlink/?linkid=869452

This warning indicates that your project is being compiled using a preview version of the .NET Core SDK, as
explained in the Matching rules section. .NET Core SDK versions have a history and commitment of being high
quality. However, if you don't want to use a preview version, add a global.json file to your project hierarchy
structure to specify which SDK version to use, and use dotnet --list-sdks to confirm that the version is installed
on your machine. When a new version is released, to use the new version, either remove the global.json file or

https://go.microsoft.com/fwlink/?linkid=869452

WARNING

See also

update it to use the newer version.

Startup project '{startupProject}' targets framework '.NETCoreApp' version '{targetFrameworkVersion}'. This version of the
Entity Framework Core .NET Command-line Tools only supports version 2.0 or higher. For information on using older
versions of the tools, see https://go.microsoft.com/fwlink/?linkid=871254

Starting with .NET Core 2.1 SDK (version 2.1.300), the dotnet ef command comes included in the SDK. This
warning indicates that your project targets EF Core 1.0 or 1.1, which isn't compatible with .NET Core 2.1 SDK and
later versions. To compile your project, install .NET Core 2.0 SDK (version 2.1.201) and earlier on your machine
and define the desired SDK version using the global.json file. For more information about the dotnet ef

command, see EF Core .NET Command-line Tools.

How project SDKs are resolved

https://go.microsoft.com/fwlink/?linkid=871254
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/visualstudio/msbuild/how-to-use-project-sdk#how-project-sdks-are-resolved

dotnet command
9/19/2019 • 9 minutes to read • Edit Online

Name

Synopsis

dotnet [command] [arguments] [--additional-deps] [--additionalprobingpath] [--depsfile]
 [-d|--diagnostics] [--fx-version] [-h|--help] [--info] [--list-runtimes] [--list-sdks] [--roll-forward-
on-no-candidate-fx] [--runtimeconfig] [-v|--verbosity] [--version]

Description

Options

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet - A tool for managing .NET source code and binaries.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

dotnet is a tool for managing .NET source code and binaries. It exposes commands that perform specific tasks,
such as dotnet build and dotnet run . Each command defines its own arguments. Type --help after each
command to access brief help documentation.

dotnet can be used to run applications, by specifying an application DLL, such as dotnet myapp.dll . See .NET
Core application deployment for to learn about deployment options.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--additional-deps <PATH>

Path to an additional .deps.json file.

--additionalprobingpath <PATH>

Path containing probing policy and assemblies to probe.

--depsfile

Path to a deps.json file.

A deps.json file contains a list of dependencies, compilation dependencies and version information used to
address assembly conflicts. For more information about this file, see Runtime Configuration Files on GitHub.

-d|--diagnostics

Enables diagnostic output.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet.md
https://github.com/dotnet/cli/blob/master/Documentation/specs/runtime-configuration-file.md

dotnet commands
General

COMMAND FUNCTION

dotnet build Builds a .NET Core application.

--fx-version <VERSION>

Version of the .NET Core runtime to use to run the application.

-h|--help

Prints out documentation for a given command, such as dotnet build --help . dotnet --help prints a list of
available commands.

--info

Prints out detailed information about a .NET Core installation and the machine environment, such as the current
operating system, and commit SHA of the .NET Core version.

--list-runtimes

Displays the installed .NET Core runtimes.

--list-sdks

Displays the installed .NET Core SDKs.

--roll-forward-on-no-candidate-fx <N>

Defines behavior when the required shared framework is not available. N can be:

0 - Disable even minor version roll forward.
1 - Roll forward on minor version, but not on major version. This is the default behavior.
2 - Roll forward on minor and major versions.

For more information, see Roll forward.

--runtimeconfig

Path to a runtimeconfig.json file.

A runtimeconfig.json file is a configuration file containing runtime configuration settings. For more information,
see Runtime Configuration Files on GitHub.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] . Not supported in every command; see specific command page to determine if this option is

available.

--version

Prints out the version of the .NET Core SDK in use.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

https://github.com/dotnet/cli/blob/master/Documentation/specs/runtime-configuration-file.md

dotnet build-server Interacts with servers started by a build.

dotnet clean Clean build outputs.

dotnet help Shows more detailed documentation online for the command.

dotnet migrate Migrates a valid Preview 2 project to a .NET Core SDK 1.0
project.

dotnet msbuild Provides access to the MSBuild command line.

dotnet new Initializes a C# or F# project for a given template.

dotnet pack Creates a NuGet package of your code.

dotnet publish Publishes a .NET framework-dependent or self-contained
application.

dotnet restore Restores the dependencies for a given application.

dotnet run Runs the application from source.

dotnet sln Options to add, remove, and list projects in a solution file.

dotnet store Stores assemblies in the runtime package store.

dotnet test Runs tests using a test runner.

COMMAND FUNCTION

Project references

COMMAND FUNCTION

dotnet add reference Adds a project reference.

dotnet list reference Lists project references.

dotnet remove reference Removes a project reference.

NuGet packages

COMMAND FUNCTION

dotnet add package Adds a NuGet package.

dotnet remove package Removes a NuGet package.

NuGet commands

COMMAND FUNCTION

dotnet nuget delete Deletes or unlists a package from the server.

dotnet nuget locals Clears or lists local NuGet resources such as http-request
cache, temporary cache, or machine-wide global packages
folder.

dotnet nuget push Pushes a package to the server and publishes it.

COMMAND FUNCTION

Global Tools commands

COMMAND FUNCTION

dotnet tool install Installs a Global Tool on your machine.

dotnet tool list Lists all Global Tools currently installed in the default directory
on your machine or in the specified path.

dotnet tool uninstall Uninstalls a Global Tool from your machine.

dotnet tool update Updates a Global Tool on your machine.

Additional tools

TOOL FUNCTION

dev-certs Creates and manages development certificates.

ef Entity Framework Core command-line tools.

sql-cache SQL Server cache command-line tools.

user-secrets Manages development user secrets.

watch Starts a file watcher that runs a command when files change.

Examples

.NET Core Global Tools are available starting with .NET Core SDK 2.1.300:

Starting with .NET Core SDK 2.1.300, a number of tools that were available only on a per project basis using
DotnetCliToolReference are now available as part of the .NET Core SDK. These tools are listed in the following

table:

For more information about each tool, type dotnet <tool-name> --help .

Creates a new .NET Core console application:

dotnet new console

Restore dependencies for a given application:

dotnet restore

https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/aspnet/core/security/app-secrets
https://docs.microsoft.com/aspnet/core/tutorials/dotnet-watch

NOTE

Environment variables

See also

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

Build a project and its dependencies in a given directory:

dotnet build

Run an application DLL, such as myapp.dll :

dotnet myapp.dll

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

DOTNET_PACKAGES

The global packages folder. If not set, it defaults to ~/.nuget/packages on Unix or %userprofile%\.nuget\packages

on Windows.

DOTNET_SERVICING

Specifies the location of the servicing index to use by the shared host when loading the runtime.

DOTNET_CLI_TELEMETRY_OPTOUT

Specifies whether data about the .NET Core tools usage is collected and sent to Microsoft. Set to true to opt-out
of the telemetry feature (values true , 1 , or yes accepted). Otherwise, set to false to opt into the telemetry
features (values false , 0 , or no accepted). If not set, the default is false and the telemetry feature is active.

DOTNET_MULTILEVEL_LOOKUP

Specifies whether .NET Core runtime, shared framework, or SDK are resolved from the global location. If not set,
it defaults to true . Set to false to not resolve from the global location and have isolated .NET Core installations
(values 0 or false are accepted). For more information about multi-level lookup, see Multi-level SharedFX
Lookup.

DOTNET_ROLL_FORWARD_ON_NO_CANDIDATE_FX

Disables minor version roll forward, if set to 0 . For more information, see Roll forward.

Runtime Configuration Files

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/multilevel-sharedfx-lookup.md
https://github.com/dotnet/cli/blob/master/Documentation/specs/runtime-configuration-file.md

dotnet build
11/3/2019 • 5 minutes to read • Edit Online

Name

Synopsis
dotnet build [<PROJECT>|<SOLUTION>] [-c|--configuration] [-f|--framework] [--force]
 [--interactive] [--no-dependencies] [--no-incremental] [--no-restore] [--nologo]
 [-o|--output] [-r|--runtime] [-v|--verbosity] [--version-suffix]

dotnet build [-h|--help]

Description

This article applies to: ✓ .NET Core 1.x SDK and later versions

dotnet build - Builds a project and all of its dependencies.

The dotnet build command builds the project and its dependencies into a set of binaries. The binaries include
the project's code in Intermediate Language (IL) files with a .dll extension. Depending on the project type and
settings, other files may be included, such as:

An executable that can be used to run the application, if the project type is an executable targeting .NET
Core 3.0 or later.
Symbol files used for debugging with a .pdb extension.
A .deps.json file, which lists the dependencies of the application or library.
A .runtimeconfig.json file, which specifies the shared runtime and its version for an application.
Other libraries that the project depends on (via project references or NuGet package references).

For executable projects targeting versions earlier than .NET Core 3.0, library dependencies from NuGet are
typically NOT copied to the output folder. They're resolved from the NuGet global packages folder at run time.
With that in mind, the product of dotnet build isn't ready to be transferred to another machine to run. To
create a version of the application that can be deployed, you need to publish it (for example, with the dotnet
publish command). For more information, see .NET Core Application Deployment.

For executable projects targeting .NET Core 3.0 and later, library dependencies are copied to the output folder.
This means that if there isn't any other publish-specific logic (such as Web projects have), the build output
should be deployable.

Building requires the project.assets.json file, which lists the dependencies of your application. The file is created
when dotnet restore is executed. Without the assets file in place, the tooling can't resolve reference
assemblies, which results in errors. With .NET Core 1.x SDK, you needed to explicitly run dotnet restore

before running dotnet build . Starting with .NET Core 2.0 SDK, dotnet restore runs implicitly when you run
dotnet build . If you want to disable implicit restore when running the build command, you can pass the
--no-restore option.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-build.md

NOTE

<PropertyGroup>
 <OutputType>Exe</OutputType>
</PropertyGroup>

MSBuild

Arguments

Options

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet build and dotnet run . It's still a valid command in certain scenarios where
doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in build
systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source).
Short form options, such as -s , are not supported.

Whether the project is executable or not is determined by the <OutputType> property in the project file. The
following example shows a project that produces executable code:

To produce a library, omit the <OutputType> property or change its value to Library . The IL DLL for a library
doesn't contain entry points and can't be executed.

dotnet build uses MSBuild to build the project, so it supports both parallel and incremental builds. For more
information, see Incremental Builds.

In addition to its options, the dotnet build command accepts MSBuild options, such as -p for setting
properties or -l to define a logger. For more information about these options, see the MSBuild Command-
Line Reference. Or you can also use the dotnet msbuild command.

Running dotnet build is equivalent to running dotnet msbuild -restore ; however, the default verbosity of the
output is different.

PROJECT | SOLUTION

The project or solution file to build. If a project or solution file isn't specified, MSBuild searches the current
working directory for a file that has a file extension that ends in either proj or sln and uses that file.

-c|--configuration {Debug|Release}

Defines the build configuration. The default for most projects is Debug , but you can override the build
configuration settings in your project.

-f|--framework <FRAMEWORK>

Compiles for a specific framework. The framework must be defined in the project file.

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the
same as deleting the project.assets.json file. Available since .NET Core 2.0 SDK.

-h|--help

Prints out a short help for the command.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/visualstudio/msbuild/incremental-builds
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

--interactive

Allows the command to stop and wait for user input or action. For example, to complete authentication.
Available since .NET Core 3.0 SDK.

--no-dependencies

Ignores project-to-project (P2P) references and only builds the specified root project.

--no-incremental

Marks the build as unsafe for incremental build. This flag turns off incremental compilation and forces a
clean rebuild of the project's dependency graph.

--no-restore

Doesn't execute an implicit restore during build. Available since .NET Core 2.0 SDK.

--nologo

Doesn't display the startup banner or the copyright message. Available since .NET Core 3.0 SDK.

-o|--output <OUTPUT_DIRECTORY>

Directory in which to place the built binaries. If not specified, the default path is
./bin/<configuration>/<framework>/ . For projects with multiple target frameworks (via the
TargetFrameworks property), you also need to define --framework when you specify this option.

-r|--runtime <RUNTIME_IDENTIFIER>

Specifies the target runtime. For a list of Runtime Identifiers (RIDs), see the RID catalog.

-v|--verbosity <LEVEL>

Sets the MSBuild verbosity level. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] . The default is minimal .

--version-suffix <VERSION_SUFFIX>

Sets the value of the $(VersionSuffix) property to use when building the project. This only works if the
$(Version) property isn't set. Then, $(Version) is set to the $(VersionPrefix) combined with the
$(VersionSuffix) , separated by a dash.

dotnet build

dotnet build --configuration Release

dotnet build --runtime ubuntu.18.04-x64

Build a project and its dependencies:

Build a project and its dependencies using Release configuration:

Build a project and its dependencies for a specific runtime (in this example, Ubuntu 18.04):

Build the project and use the specified NuGet package source during the restore operation (.NET Core

dotnet build --source c:\packages\mypackages

dotnet build -p:Version=1.2.3.4

2.0 SDK and later versions):

Build the project and set version 1.2.3.4 as a build parameter using the -p MSBuild option:

dotnet build-server
10/17/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet build-server shutdown [--msbuild] [--razor] [--vbcscompiler]
dotnet build-server shutdown [-h|--help]
dotnet build-server [-h|--help]

Commands

Options

This article applies to: ✓ .NET Core 2.1 SDK and later versions

dotnet build-server - Interacts with servers started by a build.

shutdown

Shuts down build servers that are started from dotnet. By default, all servers are shut down.

-h|--help

Prints out a short help for the command.

--msbuild

Shuts down the MSBuild build server.

--razor

Shuts down the Razor build server.

--vbcscompiler

Shuts down the VB/C# compiler build server.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-build-server.md

dotnet clean
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet clean [<PROJECT>|<SOLUTION>] [-c|--configuration] [-f|--framework] [--interactive]
 [--nologo] [-o|--output] [-r|--runtime] [-v|--verbosity]
dotnet clean [-h|--help]

Description

Arguments

Options

This topic applies to: ✓ .NET Core 1.x SDK and later versions

dotnet clean - Cleans the output of a project.

The dotnet clean command cleans the output of the previous build. It's implemented as an MSBuild target, so
the project is evaluated when the command is run. Only the outputs created during the build are cleaned. Both
intermediate (obj) and final output (bin) folders are cleaned.

PROJECT | SOLUTION

The MSBuild project or solution to clean. If a project or solution file is not specified, MSBuild searches the current
working directory for a file that has a file extension that ends in proj or sln, and uses that file.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug . This option is only required when cleaning if
you specified it during build time.

-f|--framework <FRAMEWORK>

The framework that was specified at build time. The framework must be defined in the project file. If you
specified the framework at build time, you must specify the framework when cleaning.

-h|--help

Prints out a short help for the command.

--interactive

Allows the command to stop and wait for user input or action. For example, to complete authentication.
Available since .NET Core 3.0 SDK.

--nologo

Doesn't display the startup banner or the copyright message. Available since .NET Core 3.0 SDK.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-clean.md
https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

-o|--output <OUTPUT_DIRECTORY>

The directory that contains the build artifacts to clean. Specify the -f|--framework <FRAMEWORK> switch with
the output directory switch if you specified the framework when the project was built.

-r|--runtime <RUNTIME_IDENTIFIER>

Cleans the output folder of the specified runtime. This is used when a self-contained deployment was
created. Option available since .NET Core 2.0 SDK.

-v|--verbosity <LEVEL>

Sets the MSBuild verbosity level. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] . The default is normal .

dotnet clean

dotnet clean --configuration Release

Clean a default build of the project:

Clean a project built using the Release configuration:

dotnet help reference
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This article applies to: ✓ .NET Core 2.0 SDK and later versions

dotnet help - Shows more detailed documentation online for the specified command.

dotnet help <COMMAND_NAME> [-h|--help]

The dotnet help command opens up the reference page for more detailed information about the specified
command at docs.microsoft.com.

COMMAND_NAME

Name of the .NET Core CLI command. For a list of the valid CLI commands, see CLI commands.

-h|--help

Prints out a short help for the command.

dotnet help new

Opens the documentation page for the dotnet new command:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-help.md

dotnet migrate
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet migrate [<SOLUTION_FILE|PROJECT_DIR>] [--format-report-file-json] [-r|--report-file] [-s|--skip-
project-references] [--skip-backup] [-t|--template-file] [-v|--sdk-package-version] [-x|--xproj-file]
dotnet migrate [-h|--help]

Description

Arguments

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet migrate - Migrates a Preview 2 .NET Core project to a .NET Core SDK-style project.

The dotnet migrate command migrates a valid Preview 2 project.json-based project to a valid .NET Core SDK-
style csproj project.

By default, the command migrates the root project and any project references that the root project contains. This
behavior is disabled using the --skip-project-references option at runtime.

Migration can be performed on the following assets:

A single project by specifying the project.json file to migrate.
All of the directories specified in the global.json file by passing in a path to the global.json file.
A solution.sln file, where it migrates the projects referenced in the solution.
On all subdirectories of the given directory recursively.

The dotnet migrate command keeps the migrated project.json file inside a backup directory, which it creates if
the directory doesn't exist. This behavior is overridden using the --skip-backup option.

By default, the migration operation outputs the state of the migration process to standard output (STDOUT). If
you use the --report-file <REPORT_FILE> option, the output is saved to the file specify.

The dotnet migrate command only supports valid Preview 2 project.json-based projects. This means that you
cannot use it to migrate DNX or Preview 1 project.json-based projects directly to MSBuild/csproj projects. You
first need to manually migrate the project to a Preview 2 project.json-based project and then use the
dotnet migrate command to migrate the project.

The dotnet migrate command is no longer available starting with .NET Core 3.0 SDK.

PROJECT_JSON/GLOBAL_JSON/SOLUTION_FILE/PROJECT_DIR

The path to one of the following:

a project.json file to migrate.
a global.json file: the folders specified in global.json are migrated.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-migrate.md

Options

Examples

a solution.sln file: the projects referenced in the solution are migrated.
a directory to migrate: recursively searches for project.json files to migrate inside the specified directory.

Defaults to current directory if nothing is specified.

--format-report-file-json <REPORT_FILE>

Output migration report file as JSON rather than user messages.

-h|--help

Prints out a short help for the command.

-r|--report-file <REPORT_FILE>

Output migration report to a file in addition to the console.

-s|--skip-project-references [Debug|Release]

Skip migrating project references. By default, project references are migrated recursively.

--skip-backup

Skip moving project.json, global.json, and *.xproj to a backup directory after successful migration.

-t|--template-file <TEMPLATE_FILE>

Template csproj file to use for migration. By default, the same template as the one dropped by
dotnet new console is used.

-v|--sdk-package-version <VERSION>

The version of the sdk package that's referenced in the migrated app. The default is the version of the SDK in
dotnet new .

-x|--xproj-file <FILE>

The path to the xproj file to use. Required when there is more than one xproj in a project directory.

Migrate a project in the current directory and all of its project-to-project dependencies:

dotnet migrate

Migrate all projects that global.json file includes:

dotnet migrate path/to/global.json

Migrate only the current project and no project-to-project (P2P) dependencies. Also, use a specific SDK version:

dotnet migrate -s -v 1.0.0-preview4

dotnet msbuild
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Examples

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet msbuild - Builds a project and all of its dependencies.

dotnet msbuild <msbuild_arguments> [-h]

The dotnet msbuild command allows access to a fully functional MSBuild.

The command has the exact same capabilities as the existing MSBuild command-line client for SDK-style project
only. The options are all the same. For more information about the available options, see the MSBuild
Command-Line Reference.

The dotnet build command is equivalent to dotnet msbuild -restore -target:Build . dotnet build is more
commonly used for building projects, but dotnet msbuild gives you more control. For example, if you have a
specific target you want to run (without running the build target), you probably want to use dotnet msbuild .

dotnet msbuild

dotnet msbuild -p:Configuration=Release

dotnet msbuild -t:Publish -p:RuntimeIdentifiers=osx.10.11-x64

dotnet msbuild -pp

Build a project and its dependencies:

Build a project and its dependencies using Release configuration:

Run the publish target and publish for the osx.10.11-x64 RID:

See the whole project with all targets included by the SDK:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-msbuild.md
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference

dotnet new
11/1/2019 • 23 minutes to read • Edit Online

Name

Synopsis

dotnet new <TEMPLATE> [--dry-run] [--force] [-i|--install] [-lang|--language] [-n|--name] [--nuget-
source] [-o|--output] [-u|--uninstall] [Template options]
dotnet new <TEMPLATE> [-l|--list] [--type]
dotnet new [-h|--help]

Description

Arguments

TEMPLATES SHORT NAME LANGUAGE TAGS

Console Application console [C#], F#, VB Common/Console

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet new - Creates a new project, configuration file, or solution based on the specified template.

.NET Core 2.2

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet new command provides a convenient way to initialize a valid .NET Core project.

The command calls the template engine to create the artifacts on disk based on the specified template
and options.

TEMPLATE

The template to instantiate when the command is invoked. Each template might have specific options you
can pass. For more information, see Template options.

If the TEMPLATE value isn't an exact match on text in the Templates or Short Name column, a substring
match is performed on those two columns.

.NET Core 2.2

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The command contains a default list of templates. Use dotnet new -l to obtain a list of the available
templates. The following table shows the templates that come pre-installed with the .NET Core SDK
2.2.100. The default language for the template is shown inside the brackets.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-new.md
https://github.com/dotnet/templating

Class library classlib [C#], F#, VB Common/Library

Unit Test Project mstest [C#], F#, VB Test/MSTest

NUnit 3 Test Project nunit [C#], F#, VB Test/NUnit

NUnit 3 Test Item nunit-test [C#], F#, VB Test/NUnit

xUnit Test Project xunit [C#], F#, VB Test/xUnit

Razor Page page [C#] Web/ASP.NET

MVC ViewImports viewimports [C#] Web/ASP.NET

MVC ViewStart viewstart [C#] Web/ASP.NET

ASP.NET Core Empty web [C#], F# Web/Empty

ASP.NET Core Web App
(Model-View-Controller)

mvc [C#], F# Web/MVC

ASP.NET Core Web App webapp , razor [C#] Web/MVC/Razor Pages

ASP.NET Core with
Angular

angular [C#] Web/MVC/SPA

ASP.NET Core with
React.js

react [C#] Web/MVC/SPA

ASP.NET Core with
React.js and Redux

reactredux [C#] Web/MVC/SPA

Razor Class Library razorclasslib [C#] Web/Razor/Library/Razor
Class Library

ASP.NET Core Web API webapi [C#], F# Web/WebAPI

global.json file globaljson Config

NuGet Config nugetconfig Config

Web Config webconfig Config

Solution File sln Solution

TEMPLATES SHORT NAME LANGUAGE TAGS

Options
.NET Core 2.2
.NET Core 2.1
.NET Core 2.0

NOTE

.NET Core 1.x

--dry-run

Displays a summary of what would happen if the given command were run if it would result in a template
creation.

--force

Forces content to be generated even if it would change existing files. This is required when the output
directory already contains a project.

-h|--help

Prints out help for the command. It can be invoked for the dotnet new command itself or for any
template, such as dotnet new mvc --help .

-i|--install <PATH|NUGET_ID>

Installs a source or template pack from the PATH or NUGET_ID provided. If you want to install a prerelease
version of a template package, you need to specify the version in the format of
<package-name>::<package-version> . By default, dotnet new passes * for the version, which represents the

last stable package version. See an example at the Examples section.

For information on creating custom templates, see Custom templates for dotnet new.

-l|--list

Lists templates containing the specified name. If invoked for the dotnet new command, it lists the
possible templates available for the given directory. For example if the directory already contains a
project, it doesn't list all project templates.

-lang|--language {C#|F#|VB}

The language of the template to create. The language accepted varies by the template (see defaults in the
arguments section). Not valid for some templates.

Some shells interpret # as a special character. In those cases, you need to enclose the language parameter value,
such as dotnet new console -lang "F#" .

-n|--name <OUTPUT_NAME>

The name for the created output. If no name is specified, the name of the current directory is used.

--nuget-source

Specifies a NuGet source to use during install.

-o|--output <OUTPUT_DIRECTORY>

Location to place the generated output. The default is the current directory.

--type

Filters templates based on available types. Predefined values are "project", "item", or "other".

-u|--uninstall <PATH|NUGET_ID>

Uninstalls a source or template pack at the PATH or NUGET_ID provided. When excluding the

NOTE

Template options

<PATH|NUGET_ID> value, all currently installed template packs and their associated templates are displayed.

To uninstall a template using a PATH , you need to fully qualify the path. For example,
C:/Users/<USER>/Documents/Templates/GarciaSoftware.ConsoleTemplate.CSharp will work, but
./GarciaSoftware.ConsoleTemplate.CSharp from the containing folder will not. Additionally, do not include a final
terminating directory slash on your template path.

Each project template may have additional options available. The core templates have the following
additional options:

.NET Core 2.2

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

console

--langVersion <VERSION_NUMBER> - Sets the LangVersion property in the created project file. For example,
use --langVersion 7.3 to use C# 7.3. Not supported for F#.

--no-restore - Doesn't execute an implicit restore during project creation.

angular, react, reactredux

--exclude-launch-settings - Exclude launchSettings.json from the generated template.

--no-restore - Doesn't execute an implicit restore during project creation.

--no-https - Project doesn't require HTTPS. This option only applies if IndividualAuth or
OrganizationalAuth are not being used.

razorclasslib

--no-restore - Doesn't execute an implicit restore during project creation.

classlib

-f|--framework <FRAMEWORK> - Specifies the framework to target. Values: netcoreapp2.2 to create a .NET
Core Class Library or netstandard2.0 to create a .NET Standard Class Library. The default value is
netstandard2.0 .

--langVersion <VERSION_NUMBER> - Sets the LangVersion property in the created project file. For example,
use --langVersion 7.3 to use C# 7.3. Not supported for F#.

--no-restore - Doesn't execute an implicit restore during project creation.

mstest, xunit

-p|--enable-pack - Enables packaging for the project using dotnet pack.

--no-restore - Doesn't execute an implicit restore during project creation.

nunit

-f|--framework <FRAMEWORK> - Specifies the framework to target. The default value is netcoreapp2.1 .

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

-p|--enable-pack - Enables packaging for the project using dotnet pack.

--no-restore - Doesn't execute an implicit restore during project creation.

page

-na|--namespace <NAMESPACE_NAME> - Namespace for the generated code. The default value is
MyApp.Namespace .

-np|--no-pagemodel - Creates the page without a PageModel.

viewimports

-na|--namespace <NAMESPACE_NAME> - Namespace for the generated code. The default value is
MyApp.Namespace .

web

--exclude-launch-settings - Exclude launchSettings.json from the generated template.

--no-restore - Doesn't execute an implicit restore during project creation.

--no-https - Project doesn't require HTTPS. This option only applies if IndividualAuth or
OrganizationalAuth are not being used.

mvc, webapp

-au|--auth <AUTHENTICATION_TYPE> - The type of authentication to use. The possible values are:

None - No authentication (Default).
Individual - Individual authentication.
IndividualB2C - Individual authentication with Azure AD B2C.
SingleOrg - Organizational authentication for a single tenant.
MultiOrg - Organizational authentication for multiple tenants.
Windows - Windows authentication.

--aad-b2c-instance <INSTANCE> - The Azure Active Directory B2C instance to connect to. Use with
IndividualB2C authentication. The default value is https://login.microsoftonline.com/tfp/ .

-ssp|--susi-policy-id <ID> - The sign-in and sign-up policy ID for this project. Use with IndividualB2C

authentication.

-rp|--reset-password-policy-id <ID> - The reset password policy ID for this project. Use with
IndividualB2C authentication.

-ep|--edit-profile-policy-id <ID> - The edit profile policy ID for this project. Use with IndividualB2C

authentication.

--aad-instance <INSTANCE> - The Azure Active Directory instance to connect to. Use with SingleOrg or
MultiOrg authentication. The default value is https://login.microsoftonline.com/ .

--client-id <ID> - The Client ID for this project. Use with IndividualB2C , SingleOrg , or MultiOrg

authentication. The default value is 11111111-1111-1111-11111111111111111 .

--domain <DOMAIN> - The domain for the directory tenant. Use with SingleOrg or IndividualB2C

authentication. The default value is qualified.domain.name .

--tenant-id <ID> - The TenantId ID of the directory to connect to. Use with SingleOrg authentication.
The default value is 22222222-2222-2222-2222-222222222222 .

--callback-path <PATH> - The request path within the application's base path of the redirect URI. Use with
SingleOrg or IndividualB2C authentication. The default value is /signin-oidc .

-r|--org-read-access - Allows this application read-access to the directory. Only applies to SingleOrg or
MultiOrg authentication.

--exclude-launch-settings - Exclude launchSettings.json from the generated template.

--no-https - Project doesn't require HTTPS. app.UseHsts and app.UseHttpsRedirection aren't added to
Startup.Configure . This option only applies if Individual , IndividualB2C , SingleOrg , or MultiOrg aren't

being used.

-uld|--use-local-db - Specifies LocalDB should be used instead of SQLite. Only applies to Individual

or IndividualB2C authentication.

--no-restore - Doesn't execute an implicit restore during project creation.

webapi

-au|--auth <AUTHENTICATION_TYPE> - The type of authentication to use. The possible values are:

None - No authentication (Default).
IndividualB2C - Individual authentication with Azure AD B2C.
SingleOrg - Organizational authentication for a single tenant.
Windows - Windows authentication.

--aad-b2c-instance <INSTANCE> - The Azure Active Directory B2C instance to connect to. Use with
IndividualB2C authentication. The default value is https://login.microsoftonline.com/tfp/ .

-ssp|--susi-policy-id <ID> - The sign-in and sign-up policy ID for this project. Use with IndividualB2C

authentication.

--aad-instance <INSTANCE> - The Azure Active Directory instance to connect to. Use with SingleOrg

authentication. The default value is https://login.microsoftonline.com/ .

--client-id <ID> - The Client ID for this project. Use with IndividualB2C or SingleOrg authentication.
The default value is 11111111-1111-1111-11111111111111111 .

--domain <DOMAIN> - The domain for the directory tenant. Use with SingleOrg or IndividualB2C

authentication. The default value is qualified.domain.name .

--tenant-id <ID> - The TenantId ID of the directory to connect to. Use with SingleOrg authentication.
The default value is 22222222-2222-2222-2222-222222222222 .

-r|--org-read-access - Allows this application read-access to the directory. Only applies to SingleOrg or
MultiOrg authentication.

--exclude-launch-settings - Exclude launchSettings.json from the generated template.

--no-https - Project doesn't require HTTPS. app.UseHsts and app.UseHttpsRedirection aren't added to
Startup.Configure . This option only applies if Individual , IndividualB2C , SingleOrg , or MultiOrg aren't

being used.

-uld|--use-local-db - Specifies LocalDB should be used instead of SQLite. Only applies to Individual

or IndividualB2C authentication.

--no-restore - Doesn't execute an implicit restore during project creation.

globaljson

 Examples

See also

--sdk-version <VERSION_NUMBER> - Specifies the version of the .NET Core SDK to use in the global.json file.

Create a C# console application project by specifying the template name:

dotnet new "Console Application"

Create an F# console application project in the current directory:

dotnet new console -lang F#

Create a .NET Standard class library project in the specified directory (available only with .NET Core SDK
2.0 or later versions):

dotnet new classlib -lang VB -o MyLibrary

Create a new ASP.NET Core C# MVC project in the current directory with no authentication:

dotnet new mvc -au None

Create a new xUnit project:

dotnet new xunit

List all templates available for MVC:

dotnet new mvc -l

List all templates matching the we substring. No exact match is found, so substring matching runs against
both the short name and name columns.

dotnet new we -l

Attempt to invoke the template matching ng. If a single match can't be determined, list the templates that
are partial matches.

dotnet new ng

Install version 2.0 of the Single Page Application templates for ASP.NET Core (command option available
for .NET Core SDK 1.1 and later versions only):

dotnet new -i Microsoft.DotNet.Web.Spa.ProjectTemplates::2.0.0

Create a global.json in the current directory setting the SDK version to 2.0.0 (available only with .NET
Core SDK 2.0 or later versions):

dotnet new globaljson --sdk-version 2.0.0

Custom templates for dotnet new
Create a custom template for dotnet new
dotnet/dotnet-template-samples GitHub repo
Available templates for dotnet new

https://github.com/dotnet/dotnet-template-samples
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new

dotnet nuget delete
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet nuget delete [<PACKAGE_NAME> <PACKAGE_VERSION>] [--force-english-output] [--interactive] [-k|--api-key]
[--no-service-endpoint]
 [--non-interactive] [-s|--source]
dotnet nuget delete [-h|--help]

Description

Arguments

Options

This topic applies to: ✓ .NET Core 1.x SDK and later versions

dotnet nuget delete - Deletes or unlists a package from the server.

The dotnet nuget delete command deletes or unlists a package from the server. For nuget.org, the action is to
unlist the package.

PACKAGE_NAME

Name/ID of the package to delete.

PACKAGE_VERSION

Version of the package to delete.

--force-english-output

Forces the application to run using an invariant, English-based culture.

-h|--help

Prints out a short help for the command.

--interactive

Allows the command to block and requires manual action for operations like authentication. Option
available since .NET Core 2.2 SDK.

-k|--api-key <API_KEY>

The API key for the server.

--no-service-endpoint

Doesn't append "api/v2/package" to the source URL. Option available since .NET Core 2.1 SDK.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-nuget-delete.md
https://www.nuget.org/

Examples

--non-interactive

Doesn't prompt for user input or confirmations.

-s|--source <SOURCE>

Specifies the server URL. Supported URLs for nuget.org include https://www.nuget.org ,
https://www.nuget.org/api/v3 , and https://www.nuget.org/api/v2/package . For private feeds, replace the

host name (for example, %hostname%/api/v3).

dotnet nuget delete Microsoft.AspNetCore.Mvc 1.0

dotnet nuget delete Microsoft.AspNetCore.Mvc 1.0 --non-interactive

Deletes version 1.0 of package Microsoft.AspNetCore.Mvc :

Deletes version 1.0 of package Microsoft.AspNetCore.Mvc , not prompting user for credentials or other input:

dotnet nuget locals
11/14/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet nuget locals <CACHE_LOCATION> [(-c|--clear)|(-l|--list)] [--force-english-output]
dotnet nuget locals [-h|--help]

Description

Arguments

Options

This topic applies to: ✓ .NET Core 1.x SDK and later versions

dotnet nuget locals - Clears or lists local NuGet resources.

The dotnet nuget locals command clears or lists local NuGet resources in the http-request cache, temporary
cache, or machine-wide global packages folder.

CACHE_LOCATION

The cache location to list or clear. It accepts one of the following values:

all - Indicates that the specified operation is applied to all cache types: http-request cache, global
packages cache, and the temporary cache.
http-cache - Indicates that the specified operation is applied only to the http-request cache. The other

cache locations aren't affected.
global-packages - Indicates that the specified operation is applied only to the global packages cache.

The other cache locations aren't affected.
temp - Indicates that the specified operation is applied only to the temporary cache. The other cache

locations aren't affected.

--force-english-output

Forces the application to run using an invariant, English-based culture.

-h|--help

Prints out a short help for the command.

-c|--clear

The clear option executes a clear operation on the specified cache type. The contents of the cache
directories are deleted recursively. The executing user/group must have permission to the files in the cache
directories. If not, an error is displayed indicating the files/folders that weren't cleared.

-l|--list

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-nuget-locals.md

Examples

Troubleshooting

The list option is used to display the location of the specified cache type.

dotnet nuget locals all –l

dotnet nuget locals http-cache --list

dotnet nuget locals all --clear

dotnet nuget locals global-packages -c

dotnet nuget locals temp -c

Displays the paths of all the local cache directories (http-cache directory, global-packages cache directory,
and temporary cache directory):

Displays the path for the local http-cache directory:

Clears all files from all local cache directories (http-cache directory, global-packages cache directory, and
temporary cache directory):

Clears all files in local global-packages cache directory:

Clears all files in local temporary cache directory:

For information on common problems and errors while using the dotnet nuget locals command, see Managing
the NuGet cache.

https://docs.microsoft.com/nuget/consume-packages/managing-the-nuget-cache

dotnet nuget push
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet nuget push [<ROOT>] [-d|--disable-buffering] [--force-english-output] [--interactive] [-k|--api-key] [-
n|--no-symbols]
 [--no-service-endpoint] [-s|--source] [-sk|--symbol-api-key] [-ss|--symbol-source] [-t|--timeout]
dotnet nuget push [-h|--help]

Description

Arguments

Options

This topic applies to: ✓ .NET Core 1.x SDK and later versions

dotnet nuget push - Pushes a package to the server and publishes it.

The dotnet nuget push command pushes a package to the server and publishes it. The push command uses
server and credential details found in the system's NuGet config file or chain of config files. For more information
on config files, see Configuring NuGet Behavior. NuGet's default configuration is obtained by loading
%AppData%\NuGet\NuGet.config (Windows) or $HOME/.local/share (Linux/macOS), then loading any
nuget.config or .nuget\nuget.config starting from the root of drive and ending in the current directory.

ROOT

Specifies the file path to the package to be pushed.

-d|--disable-buffering

Disables buffering when pushing to an HTTP(S) server to reduce memory usage.

--force-english-output

Forces the application to run using an invariant, English-based culture.

-h|--help

Prints out a short help for the command.

--interactive

Allows the command to block and requires manual action for operations like authentication. Option
available since .NET Core 2.2 SDK.

-k|--api-key <API_KEY>

The API key for the server.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-nuget-push.md
https://docs.microsoft.com/nuget/consume-packages/configuring-nuget-behavior

Examples

-n|--no-symbols

Doesn't push symbols (even if present).

--no-service-endpoint

Doesn't append "api/v2/package" to the source URL. Option available since .NET Core 2.1 SDK.

-s|--source <SOURCE>

Specifies the server URL. This option is required unless DefaultPushSource config value is set in the NuGet
config file.

-sk|--symbol-api-key <API_KEY>

The API key for the symbol server.

-ss|--symbol-source <SOURCE>

Specifies the symbol server URL.

-t|--timeout <TIMEOUT>

Specifies the timeout for pushing to a server in seconds. Defaults to 300 seconds (5 minutes). Specifying 0
(zero seconds) applies the default value.

dotnet nuget push foo.nupkg -k 4003d786-cc37-4004-bfdf-c4f3e8ef9b3a

dotnet nuget push foo.nupkg -k 4003d786-cc37-4004-bfdf-c4f3e8ef9b3a -s https://customsource/

dotnet nuget push foo.nupkg

dotnet nuget push foo.symbols.nupkg

dotnet nuget push foo.nupkg --timeout 360

dotnet nuget push *.nupkg

Pushes foo.nupkg to the default push source, specifying an API key:

Push foo.nupkg to the custom push source https://customsource , specifying an API key:

Pushes foo.nupkg to the default push source:

Pushes foo.symbols.nupkg to the default symbols source:

Pushes foo.nupkg to the default push source, specifying a 360-second timeout:

Pushes all .nupkg files in the current directory to the default push source:

NOTE
If this command doesn't work, it might be due to a bug that existed in older versions of the SDK (.NET Core 2.1 SDK
and earlier versions). To fix this, upgrade your SDK version or run the following command instead:
dotnet nuget push **/*.nupkg

dotnet pack
9/19/2019 • 4 minutes to read • Edit Online

Name

Synopsis
dotnet pack [<PROJECT>|<SOLUTION>] [-c|--configuration] [--force] [--include-source] [--include-symbols] [-
-interactive]
 [--no-build] [--no-dependencies] [--no-restore] [--nologo] [-o|--output] [--runtime] [-s|--serviceable]
 [-v|--verbosity] [--version-suffix]
dotnet pack [-h|--help]

Description

<PropertyGroup>
 <IsPackable>true</IsPackable>
</PropertyGroup>

This topic applies to: ✓ .NET Core 1.x SDK and later versions

dotnet pack - Packs the code into a NuGet package.

The dotnet pack command builds the project and creates NuGet packages. The result of this command is a
NuGet package (that is, a .nupkg file).

If you want to generate a package that contains the debug symbols, you have two options available:

--include-symbols - it creates the symbols package.
--include-source - it creates the symbols package with a src folder inside containing the source files.

NuGet dependencies of the packed project are added to the .nuspec file, so they're properly resolved when the
package is installed. Project-to-project references aren't packaged inside the project. Currently, you must have a
package per project if you have project-to-project dependencies.

By default, dotnet pack builds the project first. If you wish to avoid this behavior, pass the --no-build option.
This option is often useful in Continuous Integration (CI) build scenarios where you know the code was
previously built.

You can provide MSBuild properties to the dotnet pack command for the packing process. For more
information, see NuGet metadata properties and the MSBuild Command-Line Reference. The Examples section
shows how to use the MSBuild -p switch for a couple of different scenarios.

Web projects aren't packable by default. To override the default behavior, add the following property to your
.csproj file:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-pack.md
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference

NOTE

Arguments

Options

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet build and dotnet run . It's still a valid command in certain scenarios where
doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in build systems
that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source).
Short form options, such as -s , are not supported.

PROJECT | SOLUTION

The project or solution to pack. It's either a path to a csproj file, a solution file, or to a directory. If not specified,
the command searches the current directory for a project or solution file.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the
same as deleting the project.assets.json file. Option available since .NET Core 2.0 SDK.

-h|--help

Prints out a short help for the command.

--include-source

Includes the debug symbols NuGet packages in addition to the regular NuGet packages in the output
directory. The sources files are included in the src folder within the symbols package.

--include-symbols

Includes the debug symbols NuGet packages in addition to the regular NuGet packages in the output
directory.

--interactive

Allows the command to stop and wait for user input or action (for example, to complete authentication).
Available since .NET Core 3.0 SDK.

--no-build

Doesn't build the project before packing. It also implicitly sets the --no-restore flag.

--no-dependencies

Ignores project-to-project references and only restores the root project. Option available since .NET
Core 2.0 SDK.

--no-restore

Doesn't execute an implicit restore when running the command. Option available since .NET Core 2.0
SDK.

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

 Examples

--nologo

Doesn't display the startup banner or the copyright message. Available since .NET Core 3.0 SDK.

-o|--output <OUTPUT_DIRECTORY>

Places the built packages in the directory specified.

--runtime <RUNTIME_IDENTIFIER>

Specifies the target runtime to restore packages for. For a list of Runtime Identifiers (RIDs), see the RID
catalog. Option available since .NET Core 2.0 SDK.

-s|--serviceable

Sets the serviceable flag in the package. For more information, see .NET Blog: .NET 4.5.1 Supports
Microsoft Security Updates for .NET NuGet Libraries.

--version-suffix <VERSION_SUFFIX>

Defines the value for the $(VersionSuffix) MSBuild property in the project.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] ,
d[etailed] , and diag[nostic] .

dotnet pack

dotnet pack ~/projects/app1/project.csproj

dotnet pack --output nupkgs

dotnet pack --no-build --output nupkgs

dotnet pack --version-suffix "ci-1234"

dotnet pack -p:PackageVersion=2.1.0

Pack the project in the current directory:

Pack the app1 project:

Pack the project in the current directory and place the resulting packages into the nupkgs folder :

Pack the project in the current directory into the nupkgs folder and skip the build step:

With the project's version suffix configured as <VersionSuffix>$(VersionSuffix)</VersionSuffix> in the
.csproj file, pack the current project and update the resulting package version with the given suffix:

Set the package version to 2.1.0 with the PackageVersion MSBuild property:

https://aka.ms/nupkgservicing

dotnet pack -p:TargetFrameworks=net45

dotnet pack --runtime win10-x64

dotnet pack ~/projects/app1/project.csproj -p:NuspecFile=~/projects/app1/project.nuspec -
p:NuspecBasePath=~/projects/app1/nuget

Pack the project for a specific target framework:

Pack the project and use a specific runtime (Windows 10) for the restore operation (.NET Core SDK 2.0
and later versions):

Pack the project using a .nuspec file:

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/nuget/reference/msbuild-targets#packing-using-a-nuspec

dotnet publish
9/19/2019 • 6 minutes to read • Edit Online

Name

Synopsis

dotnet publish [<PROJECT>] [-c|--configuration] [-f|--framework] [--force] [--manifest] [--no-build] [--
no-dependencies]
 [--no-restore] [-o|--output] [-r|--runtime] [--self-contained] [-v|--verbosity] [--version-suffix]
dotnet publish [-h|--help]

Description

NOTE

Arguments

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet publish - Packs the application and its dependencies into a folder for deployment to a hosting system.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

dotnet publish compiles the application, reads through its dependencies specified in the project file, and
publishes the resulting set of files to a directory. The output includes the following assets:

Intermediate Language (IL) code in an assembly with a dll extension.
.deps.json file that includes all of the dependencies of the project.
.runtimeconfig.json file that specifies the shared runtime that the application expects, as well as other
configuration options for the runtime (for example, garbage collection type).
The application's dependencies, which are copied from the NuGet cache into the output folder.

The dotnet publish command's output is ready for deployment to a hosting system (for example, a server, PC,
Mac, laptop) for execution. It's the only officially supported way to prepare the application for deployment.
Depending on the type of deployment that the project specifies, the hosting system may or may not have the
.NET Core shared runtime installed on it. For more information, see .NET Core Application Deployment. For
the directory structure of a published application, see Directory structure.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet build and dotnet run . It's still a valid command in certain scenarios
where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in build
systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source).
Short form options, such as -s , are not supported.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-publish.md
https://docs.microsoft.com/aspnet/core/hosting/directory-structure
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

Options

PROJECT

The project to publish. It's either the path and filename of a C#, F#, or Visual Basic project file, or the path to a
directory that contains a C#, F#, or Visual Basic project file. If not specified, it defaults to the current directory.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

-f|--framework <FRAMEWORK>

Publishes the application for the specified target framework. You must specify the target framework in the
project file.

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same
as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--manifest <PATH_TO_MANIFEST_FILE>

Specifies one or several target manifests to use to trim the set of packages published with the app. The
manifest file is part of the output of the dotnet store command. To specify multiple manifests, add a
--manifest option for each manifest. This option is available starting with .NET Core 2.0 SDK.

--no-build

Doesn't build the project before publishing. It also implicitly sets the --no-restore flag.

--no-dependencies

Ignores project-to-project references and only restores the root project.

--no-restore

Doesn't execute an implicit restore when running the command.

-o|--output <OUTPUT_DIRECTORY>

Specifies the path for the output directory. If not specified, it defaults to
./bin/[configuration]/[framework]/publish/ for a framework-dependent deployment or
./bin/[configuration]/[framework]/[runtime]/publish/ for a self-contained deployment. If the path is relative,
the output directory generated is relative to the project file location, not to the current working directory.

--self-contained

Publishes the .NET Core runtime with your application so the runtime doesn't need to be installed on the
target machine. If a runtime identifier is specified, its default value is true . For more information about the
different deployment types, see .NET Core application deployment.

-r|--runtime <RUNTIME_IDENTIFIER>

https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

See also

Publishes the application for a given runtime. This is used when creating a self-contained deployment (SCD).
For a list of Runtime Identifiers (RIDs), see the RID catalog. Default is to publish a framework-dependent
deployment (FDD).

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] .

--version-suffix <VERSION_SUFFIX>

Defines the version suffix to replace the asterisk (*) in the version field of the project file.

Publish the project in the current directory:

dotnet publish

Publish the application using the specified project file:

dotnet publish ~/projects/app1/app1.csproj

Publish the project in the current directory using the netcoreapp1.1 framework:

dotnet publish --framework netcoreapp1.1

Publish the current application using the netcoreapp1.1 framework and the runtime for OS X 10.10 (you
must list this RID in the project file).

dotnet publish --framework netcoreapp1.1 --runtime osx.10.11-x64

Publish the current application but don't restore project-to-project (P2P) references, just the root project
during the restore operation (.NET Core SDK 2.0 and later versions):

dotnet publish --no-dependencies

Target frameworks
Runtime IDentifier (RID) catalog

https://docs.microsoft.com/en-us/dotnet/standard/frameworks

dotnet restore
10/11/2019 • 5 minutes to read • Edit Online

Name

Synopsis

dotnet restore [<ROOT>] [--configfile] [--disable-parallel] [--force] [--ignore-failed-sources] [--no-
cache]
 [--no-dependencies] [--packages] [-r|--runtime] [-s|--source] [-v|--verbosity] [--interactive]
dotnet restore [-h|--help]

Description

NOTE

nuget.config differences

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet restore - Restores the dependencies and tools of a project.

.NET Core 2.x

.NET Core 1.x

The dotnet restore command uses NuGet to restore dependencies as well as project-specific tools that
are specified in the project file. By default, the restoration of dependencies and tools are executed in
parallel.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all
commands that require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid
command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in
Azure DevOps Services or in build systems that need to explicitly control the time at which the restore occurs.

To restore the dependencies, NuGet needs the feeds where the packages are located. Feeds are usually
provided via the nuget.config configuration file. A default configuration file is provided when the CLI tools
are installed. You specify additional feeds by creating your own nuget.config file in the project directory.
You also specify additional feeds per invocation at a command prompt.

For dependencies, you specify where the restored packages are placed during the restore operation using
the --packages argument. If not specified, the default NuGet package cache is used, which is found in the
.nuget/packages directory in the user's home directory on all operating systems. For example,

/home/user1 on Linux or C:\Users\user1 on Windows.

For project-specific tooling, dotnet restore first restores the package in which the tool is packed, and then
proceeds to restore the tool's dependencies as specified in its project file.

The behavior of the dotnet restore command is affected by the settings in the nuget.config file, if present.
For example, setting the globalPackagesFolder in nuget.config places the restored NuGet packages in the
specified folder. This is an alternative to specifying the --packages option on the dotnet restore

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-restore.md
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

Implicit dotnet restore

Arguments

Options

command. For more information, see the nuget.config reference.

There are three specific settings that dotnet restore ignores:

bindingRedirects

Binding redirects don't work with <PackageReference> elements and .NET Core only supports
<PackageReference> elements for NuGet packages.

solution

This setting is Visual Studio specific and doesn't apply to .NET Core. .NET Core doesn't use a
packages.config file and instead uses <PackageReference> elements for NuGet packages.

trustedSigners

This setting isn't applicable as NuGet doesn't yet support cross-platform verification of trusted
packages.

Starting with .NET Core 2.0, dotnet restore is run implicitly if necessary when you issue the following
commands:

dotnet new

dotnet build

dotnet build-server

dotnet run

dotnet test

dotnet publish

dotnet pack

In most cases, you no longer need to explicitly use the dotnet restore command.

Sometimes, it might be inconvenient to run dotnet restore implicitly. For example, some automated
systems, such as build systems, need to call dotnet restore explicitly to control when the restore occurs so
that they can control network usage. To prevent dotnet restore from running implicitly, you can use the
--no-restore flag with any of these commands to disable implicit restore.

ROOT

Optional path to the project file to restore.

.NET Core 2.x

.NET Core 1.x

--configfile <FILE>

The NuGet configuration file (nuget.config) to use for the restore operation.

--disable-parallel

Disables restoring multiple projects in parallel.

https://docs.microsoft.com/nuget/schema/nuget-config-file
https://docs.microsoft.com/nuget/schema/nuget-config-file#bindingredirects-section
https://docs.microsoft.com/nuget/schema/nuget-config-file#solution-section
https://docs.microsoft.com/nuget/schema/nuget-config-file#trustedsigners-section
https://github.com/NuGet/Home/issues/7939

Examples

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the
same as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--ignore-failed-sources

Only warn about failed sources if there are packages meeting the version requirement.

--no-cache

Specifies to not cache packages and HTTP requests.

--no-dependencies

When restoring a project with project-to-project (P2P) references, restores the root project and not the
references.

--packages <PACKAGES_DIRECTORY>

Specifies the directory for restored packages.

-r|--runtime <RUNTIME_IDENTIFIER>

Specifies a runtime for the package restore. This is used to restore packages for runtimes not explicitly
listed in the <RuntimeIdentifiers> tag in the .csproj file. For a list of Runtime Identifiers (RIDs), see the RID
catalog. Provide multiple RIDs by specifying this option multiple times.

-s|--source <SOURCE>

Specifies a NuGet package source to use during the restore operation. This setting overrides all of the
sources specified in the nuget.config files. Multiple sources can be provided by specifying this option
multiple times.

--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] ,
and diag[nostic] . Default value is minimal .

--interactive

Allows the command to stop and wait for user input or action (for example to complete authentication).
Since .NET Core 2.1.400.

Restore dependencies and tools for the project in the current directory:

dotnet restore

Restore dependencies and tools for the app1 project found in the given path:

dotnet restore ~/projects/app1/app1.csproj

Restore the dependencies and tools for the project in the current directory using the file path provided as
the source:

dotnet restore -s c:\packages\mypackages

Restore the dependencies and tools for the project in the current directory using the two file paths
provided as sources:

dotnet restore -s c:\packages\mypackages -s c:\packages\myotherpackages

Restore dependencies and tools for the project in the current directory showing detailed output:

dotnet restore --verbosity detailed

dotnet run
11/3/2019 • 7 minutes to read • Edit Online

Name

Synopsis

dotnet run [-c|--configuration] [-f|--framework] [--force] [--interactive] [--launch-profile] [--no-build]
[--no-dependencies]
 [--no-launch-profile] [--no-restore] [-p|--project] [-r|--runtime] [-v|--verbosity] [[--] [application
arguments]]
dotnet run [-h|--help]

Description

dotnet myapp.dll

This article applies to: ✓ .NET Core 1.x SDK and later versions

dotnet run - Runs source code without any explicit compile or launch commands.

.NET Core 3.0

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet run command provides a convenient option to run your application from the source code with one
command. It's useful for fast iterative development from the command line. The command depends on the
dotnet build command to build the code. Any requirements for the build, such as that the project must be

restored first, apply to dotnet run as well.

Output files are written into the default location, which is bin/<configuration>/<target> . For example if you
have a netcoreapp2.1 application and you run dotnet run , the output is placed in bin/Debug/netcoreapp2.1 .
Files are overwritten as needed. Temporary files are placed in the obj directory.

If the project specifies multiple frameworks, executing dotnet run results in an error unless the
-f|--framework <FRAMEWORK> option is used to specify the framework.

The dotnet run command is used in the context of projects, not built assemblies. If you're trying to run a
framework-dependent application DLL instead, you must use dotnet without a command. For example, to run
myapp.dll , use:

For more information on the dotnet driver, see the .NET Core Command Line Tools (CLI) topic.

To run the application, the dotnet run command resolves the dependencies of the application that are outside
of the shared runtime from the NuGet cache. Because it uses cached dependencies, it's not recommended to
use dotnet run to run applications in production. Instead, create a deployment using the dotnet publish

command and deploy the published output.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-run.md

NOTE

Options

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet build and dotnet run . It's still a valid command in certain scenarios where
doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in build
systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source).
Short form options, such as -s , are not supported.

.NET Core 3.0

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--

Delimits arguments to dotnet run from arguments for the application being run. All arguments after this
delimiter are passed to the application run.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value for most projects is Debug .

-f|--framework <FRAMEWORK>

Builds and runs the app using the specified framework. The framework must be specified in the project file.

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same
as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--interactive

Allows the command to stop and wait for user input or action (for example, to complete authentication).

--launch-profile <NAME>

The name of the launch profile (if any) to use when launching the application. Launch profiles are defined in
the launchSettings.json file and are typically called Development , Staging , and Production . For more
information, see Working with multiple environments.

--no-build

Doesn't build the project before running. It also implicit sets the --no-restore flag.

--no-dependencies

When restoring a project with project-to-project (P2P) references, restores the root project and not the
references.

--no-launch-profile

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/aspnet/core/fundamentals/environments

Examples

Doesn't try to use launchSettings.json to configure the application.

--no-restore

Doesn't execute an implicit restore when running the command.

-p|--project <PATH>

Specifies the path of the project file to run (folder name or full path). If not specified, it defaults to the current
directory.

--runtime <RUNTIME_IDENTIFIER>

Specifies the target runtime to restore packages for. For a list of Runtime Identifiers (RIDs), see the RID
catalog.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] .

Run the project in the current directory:

dotnet run

Run the specified project:

dotnet run --project ./projects/proj1/proj1.csproj

Run the project in the current directory (the --help argument in this example is passed to the application,
since the blank -- option is used):

dotnet run --configuration Release -- --help

Restore dependencies and tools for the project in the current directory only showing minimal output and then
run the project: (.NET Core SDK 2.0 and later versions):

dotnet run --verbosity m

dotnet sln
10/31/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet sln [<SOLUTION_FILE>] [command] [-h|--help]

Description

dotnet new sln

Arguments

Options

Commands
add

Synopsis

dotnet sln [<SOLUTION_FILE>] add [--in-root] [-s|--solution-folder] <PROJECT_PATH>
dotnet sln add [-h|--help]

Arguments

This article applies to: ✓ .NET Core 1.x SDK and later versions

dotnet sln - Modifies a .NET Core solution file.

The dotnet sln command provides a convenient way to add, remove, and list projects in a solution file.

To use the dotnet sln command, the solution file must already exist. If you need to create one, use the dotnet
new command, like in the following example:

SOLUTION_FILE

The solution file to use. If not specified, the command searches the current directory for one. If there
are multiple solution files in the directory, one must be specified.

-h|--help

Prints out a short help for the command.

Adds a project or multiple projects to the solution file.

SOLUTION_FILE

The solution file to use. If not specified, the command searches the current directory for one. If there

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-sln.md

Options

remove

Synopsis

dotnet sln [<SOLUTION_FILE>] remove <PROJECT_PATH>
dotnet sln [<SOLUTION_FILE>] remove [-h|--help]

Arguments

Options

list

Synopsis

dotnet sln list [-h|--help]

Arguments

are multiple solution files in the directory, one must be specified.

PROJECT_PATH

The path to the project to add to the solution. Add multiple projects by adding one after the other
separated by spaces. Unix/Linux shell globbing pattern expansions are processed correctly by the
dotnet sln command.

-h|--help

Prints out a short help for the command.

--in-root

Places the projects in the root of the solution, rather than creating a solution folder. Available since .NET
Core 3.0 SDK.

-s|--solution-folder

The destination solution folder path to add the projects to. Available since .NET Core 3.0 SDK.

Removes a project or multiple projects from the solution file.

SOLUTION_FILE

The solution file to use. If not specified, the command searches the current directory for one. If there
are multiple solution files in the directory, one must be specified.

PROJECT_PATH

The path to the project to remove from the solution. Remove multiple projects by adding one after the
other separated by spaces. Unix/Linux shell globbing pattern expansions are processed correctly by the
dotnet sln command.

-h|--help

Prints out a short help for the command.

Lists all projects in a solution file.

SOLUTION_FILE

The solution file to use. If not specified, the command searches the current directory for one. If there
are multiple solution files in the directory, one must be specified.

https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Glob_(programming)

Options

Examples

dotnet sln todo.sln add todo-app/todo-app.csproj

dotnet sln todo.sln remove todo-app/todo-app.csproj

dotnet sln todo.sln add todo-app/todo-app.csproj back-end/back-end.csproj

dotnet sln todo.sln remove todo-app/todo-app.csproj back-end/back-end.csproj

dotnet sln todo.sln add **/*.csproj

dotnet sln todo.sln remove **/*.csproj

-h|--help

Prints out a short help for the command.

Add a C# project to a solution:

Remove a C# project from a solution:

Add multiple C# projects to a solution:

Remove multiple C# projects from a solution:

Add multiple C# projects to a solution using a globbing pattern (Unix/Linux only):

Remove multiple C# projects from a solution using a globbing pattern (Unix/Linux only):

dotnet store
1/23/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Required options

Optional options

This article applies to: ✓ .NET Core 2.x SDK

dotnet store - Stores the specified assemblies in the runtime package store.

dotnet store -m|--manifest -f|--framework -r|--runtime [--framework-version] [-h|--help] [--output] [--skip-
optimization] [--skip-symbols] [-v|--verbosity] [--working-dir]

dotnet store stores the specified assemblies in the runtime package store. By default, assemblies are optimized
for the target runtime and framework. For more information, see the runtime package store topic.

-f|--framework <FRAMEWORK>

Specifies the target framework.

-m|--manifest <PATH_TO_MANIFEST_FILE>

The package store manifest file is an XML file that contains the list of packages to store. The format of the
manifest file is compatible with the SDK-style project format. So, a project file that references the desired
packages can be used with the -m|--manifest option to store assemblies in the runtime package store. To specify
multiple manifest files, repeat the option and path for each file. For example:
--manifest packages1.csproj --manifest packages2.csproj .

-r|--runtime <RUNTIME_IDENTIFIER>

The runtime identifier to target.

--framework-version <FRAMEWORK_VERSION>

Specifies the .NET Core SDK version. This option enables you to select a specific framework version beyond the
framework specified by the -f|--framework option.

-h|--help

Shows help information.

-o|--output <OUTPUT_DIRECTORY>

Specifies the path to the runtime package store. If not specified, it defaults to the store subdirectory of the user
profile .NET Core installation directory.

--skip-optimization

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-store.md
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

See also

Skips the optimization phase.

--skip-symbols

Skips symbol generation. Currently, you can only generate symbols on Windows and Linux.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] .

-w|--working-dir <INTERMEDIATE_WORKING_DIRECTORY>

The working directory used by the command. If not specified, it uses the obj subdirectory of the current
directory.

Store the packages specified in the packages.csproj project file for .NET Core 2.0.0:

dotnet store --manifest packages.csproj --framework-version 2.0.0

Store the packages specified in the packages.csproj without optimization:

dotnet store --manifest packages.csproj --skip-optimization

Runtime package store

dotnet test
9/23/2019 • 6 minutes to read • Edit Online

Name

Synopsis

dotnet test [<PROJECT>] [-a|--test-adapter-path] [--blame] [-c|--configuration] [--collect] [-d|--diag] [-
f|--framework] [--filter]
 [-l|--logger] [--no-build] [--no-restore] [-o|--output] [-r|--results-directory] [-s|--settings] [-t|--
list-tests]
 [-v|--verbosity] [-- <RunSettings arguments>]

dotnet test [-h|--help]

Description

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.4.0" />
 <PackageReference Include="xunit" Version="2.4.1" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.4.1" />
 </ItemGroup>

</Project>

Arguments

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet test - .NET test driver used to execute unit tests.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet test command is used to execute unit tests in a given project. The dotnet test command
launches the test runner console application specified for a project. The test runner executes the tests defined
for a unit test framework (for example, MSTest, NUnit, or xUnit) and reports the success or failure of each test.
If all tests are successful, the test runner returns 0 as an exit code; otherwise if any test fails, it returns 1. The
test runner and the unit test library are packaged as NuGet packages and are restored as ordinary
dependencies for the project.

Test projects specify the test runner using an ordinary <PackageReference> element, as seen in the following
sample project file:

PROJECT

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-test.md

Options

Path to the test project. If not specified, it defaults to current directory.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

-a|--test-adapter-path <PATH_TO_ADAPTER>

Use the custom test adapters from the specified path in the test run.

--blame

Runs the tests in blame mode. This option is helpful in isolating the problematic tests causing test host to
crash. It creates an output file in the current directory as Sequence.xml that captures the order of tests
execution before the crash.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug , but your project's configuration could override this
default SDK setting.

--collect <DATA_COLLECTOR_FRIENDLY_NAME>

Enables data collector for the test run. For more information, see Monitor and analyze test run.

-d|--diag <PATH_TO_DIAGNOSTICS_FILE>

Enables diagnostic mode for the test platform and write diagnostic messages to the specified file.

-f|--framework <FRAMEWORK>

Looks for test binaries for a specific framework.

--filter <EXPRESSION>

Filters out tests in the current project using the given expression. For more information, see the Filter option
details section. For more information and examples on how to use selective unit test filtering, see Running
selective unit tests.

-h|--help

Prints out a short help for the command.

-l|--logger <LoggerUri/FriendlyName>

Specifies a logger for test results.

--no-build

Doesn't build the test project before running it. It also implicit sets the --no-restore flag.

--no-restore

Doesn't execute an implicit restore when running the command.

-o|--output <OUTPUT_DIRECTORY>

Directory in which to find the binaries to run.

-r|--results-directory <PATH>

https://aka.ms/vstest-collect
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

Filter option details

TEST FRAMEWORK SUPPORTED PROPERTIES

MSTest

xUnit

The directory where the test results are going to be placed. If the specified directory doesn't exist, it's created.

-s|--settings <SETTINGS_FILE>

The .runsettings file to use for running the tests. Configure unit tests by using a .runsettings file.

-t|--list-tests

List all of the discovered tests in the current project.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] .

RunSettings arguments

Arguments passed as RunSettings configurations for the test. Arguments are specified as [name]=[value]

pairs after "-- " (note the space after --). A space is used to separate multiple [name]=[value] pairs.

Example: dotnet test -- MSTest.DeploymentEnabled=false MSTest.MapInconclusiveToFailed=True

For more information about RunSettings, see vstest.console.exe: Passing RunSettings args.

Run the tests in the project in the current directory:

dotnet test

Run the tests in the test1 project:

dotnet test ~/projects/test1/test1.csproj

Run the tests in the project in the current directory and generate a test results file in the trx format:

dotnet test --logger trx

--filter <EXPRESSION>

<Expression> has the format <property><operator><value>[|&<Expression>] .

<property> is an attribute of the Test Case . The following are the properties supported by popular unit test
frameworks:

FullyQualifiedName
Name
ClassName
Priority
TestCategory

FullyQualifiedName
DisplayName
Traits

https://docs.microsoft.com/visualstudio/test/configure-unit-tests-by-using-a-dot-runsettings-file
https://github.com/Microsoft/vstest-docs/blob/master/docs/RunSettingsArguments.md

OPERATOR FUNCTION

= Exact match

!= Not exact match

~ Contains

OPERATOR FUNCTION

| OR

& AND

See also

The <operator> describes the relationship between the property and the value:

<value> is a string. All the lookups are case insensitive.

An expression without an <operator> is automatically considered as a contains on FullyQualifiedName

property (for example, dotnet test --filter xyz is same as dotnet test --filter FullyQualifiedName~xyz).

Expressions can be joined with conditional operators:

You can enclose expressions in parenthesis when using conditional operators (for example,
(Name~TestMethod1) | (Name~TestMethod2)).

For more information and examples on how to use selective unit test filtering, see Running selective unit tests.

Frameworks and Targets
.NET Core Runtime IDentifier (RID) catalog

https://docs.microsoft.com/en-us/dotnet/standard/frameworks

dotnet tool install
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool install <PACKAGE_NAME> <-g|--global> [--add-source] [--configfile] [--framework] [-v|--
verbosity] [--version]
dotnet tool install <PACKAGE_NAME> <--tool-path> [--add-source] [--configfile] [--framework] [-v|--
verbosity] [--version]
dotnet tool install <-h|--help>

Description

OS PATH

Linux/macOS $HOME/.dotnet/tools

Windows %USERPROFILE%\.dotnet\tools

Arguments

Options

This article applies to: ✓ .NET Core 2.1 SDK

dotnet tool install - Installs the specified .NET Core Global Tool on your machine.

The dotnet tool install command provides a way for you to install .NET Core Global Tools on your machine.
To use the command, you either have to specify that you want a user-wide installation using the --global

option or you specify a path to install it using the --tool-path option.

Global Tools are installed in the following directories by default when you specify the -g (or --global) option:

PACKAGE_NAME

Name/ID of the NuGet package that contains the .NET Core Global Tool to install.

--add-source <SOURCE>

Adds an additional NuGet package source to use during installation.

--configfile <FILE>

The NuGet configuration (nuget.config) file to use.

--framework <FRAMEWORK>

Specifies the target framework to install the tool for. By default, the .NET Core SDK tries to choose the most
appropriate target framework.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-install.md
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

See also

-g|--global

Specifies that the installation is user wide. Can't be combined with the --tool-path option. If you don't specify
this option, you must specify the --tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies the location where to install the Global Tool. PATH can be absolute or relative. If PATH doesn't exist, the
command tries to create it. Can't be combined with the --global option. If you don't specify this option, you
must specify the --global option.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] .

--version <VERSION_NUMBER>

The version of the tool to install. By default, the latest stable package version is installed. Use this option to install
preview or older versions of the tool.

Installs the dotnetsay Global Tool in the default location:

dotnet tool install -g dotnetsay

Installs the dotnetsay Global Tool on a specific Windows folder:

dotnet tool install dotnetsay --tool-path c:\global-tools

Installs the dotnetsay Global Tool on a specific Linux/macOS folder:

dotnet tool install dotnetsay --tool-path ~/bin

Installs version 2.0.0 of the dotnetsay Global Tool:

dotnet tool install -g dotnetsay --version 2.0.0

.NET Core Global Tools

https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/

dotnet tool list
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool list <-g|--global>
dotnet tool list <--tool-path>
dotnet tool list <-h|--help>

Description

Options

Examples

This article applies to: ✓ .NET Core 2.1 SDK

dotnet tool list - Lists all .NET Core Global Tools currently installed in the default directory on your machine or
in the specified path.

The dotnet tool list command provides a way for you to list all .NET Core Global Tools installed user-wide on
your machine (current user profile) or in the specified path. The command lists the package name, version
installed, and the Global Tool command. To use the list command, you either have to specify that you want to see
all user-wide tools using the --global option or specify a custom path using the --tool-path option.

-g|--global

Lists user-wide Global Tools. Can't be combined with the --tool-path option. If you don't specify this option, you
must specify the --tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies a custom location where to find Global Tools. PATH can be absolute or relative. Can't be combined with
the --global option. If you don't specify this option, you must specify the --global option.

Lists all Global Tools installed user-wide on your machine (current user profile):

dotnet tool list -g

Lists the Global Tools from a specific Windows folder:

dotnet tool list --tool-path c:\global-tools

Lists the Global Tools from a specific Linux/macOS folder:

dotnet tool list --tool-path ~/bin

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-list.md

See also
.NET Core Global Tools

dotnet tool uninstall
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool uninstall <PACKAGE_NAME> <-g|--global>
dotnet tool uninstall <PACKAGE_NAME> <--tool-path>
dotnet tool uninstall <-h|--help>

Description

Arguments

Options

Examples

This article applies to: ✓ .NET Core 2.1 SDK

dotnet tool uninstall - Uninstalls the specified .NET Core Global Tool from your machine.

The dotnet tool uninstall command provides a way for you to uninstall .NET Core Global Tools from your
machine. To use the command, you either have to specify that you want to remove a user-wide tool using the
--global option or specify a path to where the tool is installed using the --tool-path option.

PACKAGE_NAME

Name/ID of the NuGet package that contains the .NET Core Global Tool to uninstall. You can find the package
name using the dotnet tool list command.

-g|--global

Specifies that the tool to be removed is from a user-wide installation. Can't be combined with the --tool-path

option. If you don't specify this option, you must specify the --tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies the location where to uninstall the Global Tool. PATH can be absolute or relative. Can't be combined with
the --global option. If you don't specify this option, you must specify the --global option.

Uninstalls the dotnetsay Global Tool:

dotnet tool uninstall -g dotnetsay

Uninstalls the dotnetsay Global Tool from a specific Windows folder:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-uninstall.md
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/

See also

dotnet tool uninstall dotnetsay --tool-path c:\global-tools

Uninstalls the dotnetsay Global Tool from a specific Linux/macOS folder:

dotnet tool uninstall dotnetsay --tool-path ~/bin

.NET Core Global Tools

https://www.nuget.org/packages/dotnetsay/

dotnet tool update
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool update <PACKAGE_NAME> <-g|--global> [--configfile] [--framework] [-v|--verbosity]
dotnet tool update <PACKAGE_NAME> <--tool-path> [--configfile] [--framework] [-v|--verbosity]
dotnet tool update <-h|--help>

Description

Arguments

Options

This article applies to: ✓ .NET Core 2.1 SDK

dotnet tool update - Updates the specified .NET Core Global Tool on your machine.

The dotnet tool update command provides a way for you to update .NET Core Global Tools on your machine to
the latest stable version of the package. The command uninstalls and reinstalls a tool, effectively updating it. To use
the command, you either have to specify that you want to update a tool from a user-wide installation using the
--global option or specify a path to where the tool is installed using the --tool-path option.

PACKAGE_NAME

Name/ID of the NuGet package that contains the .NET Core Global Tool to update. You can find the package
name using the dotnet tool list command.

--add-source <SOURCE>

Adds an additional NuGet package source to use during installation.

--configfile <FILE>

The NuGet configuration (nuget.config) file to use.

--framework <FRAMEWORK>

Specifies the target framework to update the tool for.

-g|--global

Specifies that the update is for a user-wide tool. Can't be combined with the --tool-path option. If you don't
specify this option, you must specify the --tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-update.md
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

See also

Specifies the location where the Global Tool is installed. PATH can be absolute or relative. Can't be combined with
the --global option. If you don't specify this option, you must specify the --global option.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and
diag[nostic] .

Updates the dotnetsay Global Tool:

dotnet tool update -g dotnetsay

Updates the dotnetsay Global Tool located on a specific Windows folder:

dotnet tool update dotnetsay --tool-path c:\global-tools

Updates the dotnetsay Global Tool located on a specific Linux/macOS folder:

dotnet tool update dotnetsay --tool-path ~/bin

.NET Core Global Tools

https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/

dotnet vstest
9/19/2019 • 6 minutes to read • Edit Online

Name

Synopsis

dotnet vstest [<TEST_FILE_NAMES>] [--Settings|/Settings] [--Tests|/Tests] [--TestAdapterPath|/TestAdapterPath]
 [--Platform|/Platform] [--Framework|/Framework] [--Parallel|/Parallel] [--TestCaseFilter|/TestCaseFilter]
[--logger|/logger]
 [-lt|--ListTests|/lt|/ListTests] [--ParentProcessId|/ParentProcessId] [--Port|/Port] [--Diag|/Diag] [--
Blame|/Blame] [--InIsolation|/InIsolation]
 [[--] <args>...]] [-?|--Help|/?|/Help]

Description

Arguments

Options

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet-vstest - Runs tests from the specified files.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet-vstest command runs the VSTest.Console command-line application to run automated unit tests.

TEST_FILE_NAMES

Run tests from the specified assemblies. Separate multiple test assembly names with spaces.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--Settings|/Settings:<Settings File>

Settings to use when running tests.

--Tests|/Tests:<Test Names>

Run tests with names that match the provided values. Separate multiple values with commas.

--TestAdapterPath|/TestAdapterPath

Use custom test adapters from a given path (if any) in the test run.

--Platform|/Platform:<Platform type>

Target platform architecture used for test execution. Valid values are x86 , x64 , and ARM .

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-vstest.md

--Framework|/Framework:<Framework Version>

Target .NET Framework version used for test execution. Examples of valid values are .NETFramework,Version=v4.6

or .NETCoreApp,Version=v1.0 . Other supported values are Framework40 , Framework45 , FrameworkCore10 , and
FrameworkUap10 .

--Parallel|/Parallel

Execute tests in parallel. By default, all available cores on the machine are available for use. Specify an explicit
number of cores by setting the MaxCpuCount property under the RunConfiguration node in the runsettings file.

--TestCaseFilter|/TestCaseFilter:<Expression>

Run tests that match the given expression. <Expression> is of the format
<property>Operator<value>[|&<Expression>] , where Operator is one of = , != , or ~ . Operator ~ has 'contains'

semantics and is applicable for string properties like DisplayName . Parenthesis () are used to group sub-
expressions.

-?|--Help|/?|/Help

Prints out a short help for the command.

--logger|/logger:<Logger Uri/FriendlyName>

Specify a logger for test results.

/logger:TfsPublisher;
 Collection=<team project collection url>;
 BuildName=<build name>;
 TeamProject=<team project name>
 [;Platform=<Defaults to "Any CPU">]
 [;Flavor=<Defaults to "Debug">]
 [;RunTitle=<title>]

/logger:trx [;LogFileName=<Defaults to unique file name>]

To publish test results to Team Foundation Server, use the TfsPublisher logger provider :

To log results to a Visual Studio Test Results File (TRX), use the trx logger provider. This switch creates a
file in the test results directory with given log file name. If LogFileName isn't provided, a unique file name is
created to hold the test results.

-lt|--ListTests|/lt|/ListTests:<File Name>

Lists all discovered tests from the given test container.

--ParentProcessId|/ParentProcessId:<ParentProcessId>

Process ID of the parent process responsible for launching the current process.

--Port|/Port:<Port>

Specifies the port for the socket connection and receiving the event messages.

--Diag|/Diag:<Path to log file>

Enables verbose logs for the test platform. Logs are written to the provided file.

--Blame|/Blame

Examples

Runs the tests in blame mode. This option is helpful in isolating the problematic tests causing test host to crash. It
creates an output file in the current directory as Sequence.xml that captures the order of tests execution before the
crash.

--InIsolation|/InIsolation

Runs the tests in an isolated process. This makes vstest.console.exe process less likely to be stopped on an error in
the tests, but tests may run slower.

@<file>

Reads response file for more options.

args

Specifies extra arguments to pass to the adapter. Arguments are specified as name-value pairs of the form
<n>=<v> , where <n> is the argument name and <v> is the argument value. Use a space to separate multiple

arguments.

Run tests in mytestproject.dll :

dotnet vstest mytestproject.dll

Run tests in mytestproject.dll , exporting to custom folder with custom name:

dotnet vstest mytestproject.dll --logger:"trx;LogFileName=custom_file_name.trx" --
ResultsDirectory:custom/file/path

Run tests in mytestproject.dll and myothertestproject.exe :

dotnet vstest mytestproject.dll myothertestproject.exe

Run TestMethod1 tests:

dotnet vstest /Tests:TestMethod1

Run TestMethod1 and TestMethod2 tests:

dotnet vstest /Tests:TestMethod1,TestMethod2

dotnet-install scripts reference
9/10/2019 • 4 minutes to read • Edit Online

Name

Synopsis

Description

Options

dotnet-install.ps1 | dotnet-install.sh - Script used to install the .NET Core CLI tools and the shared runtime.

Windows:

dotnet-install.ps1 [-Channel] [-Version] [-InstallDir] [-Architecture] [-SharedRuntime] [-Runtime] [-DryRun]
[-NoPath] [-Verbose] [-AzureFeed] [-UncachedFeed] [-NoCdn] [-FeedCredential] [-ProxyAddress] [-
ProxyUseDefaultCredentials] [-SkipNonVersionedFiles] [-Help]

macOS/Linux:

dotnet-install.sh [--channel] [--version] [--install-dir] [--architecture] [--runtime] [--dry-run] [--no-path]
[--verbose] [--azure-feed] [--uncached-feed] [--no-cdn] [--feed-credential] [--runtime-id] [--skip-non-
versioned-files] [--help]

The dotnet-install scripts are used to perform a non-admin installation of the .NET Core SDK, which includes
the .NET Core CLI tools and the shared runtime.

We recommend that you use the stable version that is hosted on .NET Core main website. The direct paths to the
scripts are:

https://dot.net/v1/dotnet-install.sh (bash, UNIX)
https://dot.net/v1/dotnet-install.ps1 (Powershell, Windows)

The main usefulness of these scripts is in automation scenarios and non-admin installations. There are two
scripts: one is a PowerShell script that works on Windows, and the other is a bash script that works on
Linux/macOS. Both scripts have the same behavior. The bash script also reads PowerShell switches, so you can
use PowerShell switches with the script on Linux/macOS systems.

The installation scripts download the ZIP/tarball file from the CLI build drops and proceed to install it in either
the default location or in a location specified by -InstallDir|--install-dir . By default, the installation scripts
download the SDK and install it. If you wish to only obtain the shared runtime, specify the --runtime argument.

By default, the script adds the install location to the $PATH for the current session. Override this default behavior
by specifying the --no-path argument.

Before running the script, install the required dependencies.

You can install a specific version using the --version argument. The version must be specified as a three-part
version (for example, 1.0.0-13232). If not provided, it uses the latest version.

-Channel <CHANNEL>

Specifies the source channel for the installation. The possible values are:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-install-script.md
https://dot.net
https://dot.net/v1/dotnet-install.sh
https://dot.net/v1/dotnet-install.ps1
https://github.com/dotnet/core/blob/master/Documentation/prereqs.md

NOTE

Current - Most current release.
LTS - Long-Term Support channel (most current supported release).

Two-part version in X.Y format representing a specific release (for example, 2.0 or 1.0).
Branch name. For example, release/2.0.0 , release/2.0.0-preview2 , or master (for nightly releases).

The default value is LTS . For more information on .NET support channels, see the .NET Support Policy
page.

-Version <VERSION>

Represents a specific build version. The possible values are:

latest - Latest build on the channel (used with the -Channel option).
coherent - Latest coherent build on the channel; uses the latest stable package combination (used with

Branch name -Channel options).
Three-part version in X.Y.Z format representing a specific build version; supersedes the -Channel

option. For example: 2.0.0-preview2-006120 .
If not specified, -Version defaults to latest .

-InstallDir <DIRECTORY>

Specifies the installation path. The directory is created if it doesn't exist. The default value is
%LocalAppData%\Microsoft\dotnet. Binaries are placed directly in this directory.

-Architecture <ARCHITECTURE>

Architecture of the .NET Core binaries to install. Possible values are <auto> , amd64 , x64 , x86 , arm64 ,
and arm . The default value is <auto> , which represents the currently running OS architecture.

-SharedRuntime

This parameter is obsolete and may be removed in a future version of the script. The recommended alternative is
the Runtime option.

Installs just the shared runtime bits, not the entire SDK. This is equivalent to specifying -Runtime dotnet .

-Runtime <RUNTIME>

Installs just the shared runtime, not the entire SDK. The possible values are:

dotnet - the Microsoft.NETCore.App shared runtime.
aspnetcore - the Microsoft.AspNetCore.App shared runtime.

-DryRun

If set, the script won't perform the installation. Instead, it displays what command line to use to
consistently install the currently requested version of the .NET Core CLI. For example, if you specify
version latest , it displays a link with the specific version so that this command can be used
deterministically in a build script. It also displays the binary's location if you prefer to install or download it
yourself.

-NoPath

If set, the installation folder isn't exported to the path for the current session. By default, the script modifies
the PATH, which makes the CLI tools available immediately after install.

https://dotnet.microsoft.com/platform/support/policy/dotnet-core

Examples

-Verbose

Displays diagnostics information.

-AzureFeed

Specifies the URL for the Azure feed to the installer. We recommended that you don't change this value.
The default value is https://dotnetcli.azureedge.net/dotnet .

-UncachedFeed

Allows changing the URL for the uncached feed used by this installer. We recommended that you don't
change this value.

-NoCdn

Disables downloading from the Azure Content Delivery Network (CDN) and uses the uncached feed
directly.

-FeedCredential

Used as a query string to append to the Azure feed. It allows changing the URL to use non-public blob
storage accounts.

-ProxyAddress

If set, the installer uses the proxy when making web requests. (Only valid for Windows)

ProxyUseDefaultCredentials

If set, the installer uses the credentials of the current user when using proxy address. (Only valid for
Windows)

-SkipNonVersionedFiles

Skips installing non-versioned files, such as dotnet.exe, if they already exist.

-Help

Prints out help for the script.

./dotnet-install.ps1 -Channel LTS

./dotnet-install.sh --channel LTS

./dotnet-install.ps1 -Channel 2.0 -InstallDir C:\cli

Install the latest long-term supported (LTS) version to the default location:

Windows:

macOS/Linux:

Install the latest version from 2.0 channel to the specified location:

Windows:

https://docs.microsoft.com/azure/cdn/cdn-overview

See also

./dotnet-install.sh --channel 2.0 --install-dir ~/cli

./dotnet-install.ps1 -Runtime dotnet -Version 1.1.0

./dotnet-install.sh --runtime dotnet --version 1.1.0

Invoke-WebRequest 'https://dot.net/v1/dotnet-install.ps1' -Proxy $env:HTTP_PROXY -
ProxyUseDefaultCredentials -OutFile 'dotnet-install.ps1';
./dotnet-install.ps1 -InstallDir '~/.dotnet' -Version '2.1.2' -ProxyAddress $env:HTTP_PROXY -
ProxyUseDefaultCredentials;

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "
[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; &
([scriptblock]::Create((Invoke-WebRequest -UseBasicParsing 'https://dot.net/v1/dotnet-install.ps1')))
<additional install-script args>"

curl -sSL https://dot.net/v1/dotnet-install.sh | bash /dev/stdin <additional install-script args>

macOS/Linux:

Install the 1.1.0 version of the shared runtime:

Windows:

macOS/Linux:

Obtain script and install the 2.1.2 version behind a corporate proxy (Windows only):

Obtain script and install .NET Core CLI one-liner examples:

Windows:

macOS/Linux:

.NET Core releases

.NET Core Runtime and SDK download archive

https://github.com/dotnet/core/releases
https://github.com/dotnet/core/blob/master/release-notes/download-archive.md

dotnet add reference
10/30/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

<ItemGroup>
 <ProjectReference Include="app.csproj" />
 <ProjectReference Include="..\lib2\lib2.csproj" />
 <ProjectReference Include="..\lib1\lib1.csproj" />
</ItemGroup>

Arguments

Options

Examples

This article applies to: ✓ .NET Core 1.x SDK and later versions

dotnet add reference - Adds project-to-project (P2P) references.

dotnet add [<PROJECT>] reference [-f|--framework] <PROJECT_REFERENCES> [-h|--help] [--interactive]

The dotnet add reference command provides a convenient option to add project references to a project. After
running the command, the <ProjectReference> elements are added to the project file.

PROJECT

Specifies the project file. If not specified, the command searches the current directory for one.

PROJECT_REFERENCES

Project-to-project (P2P) references to add. Specify one or more projects. Glob patterns are supported on
Unix/Linux-based systems.

-h|--help

Prints out a short help for the command.

-f|--framework <FRAMEWORK>

Adds project references only when targeting a specific framework.

--interactive

Allows the command to stop and wait for user input or action (for example, to complete authentication).
Available since .NET Core 3.0 SDK.

Add a project reference:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-add-reference.md
https://en.wikipedia.org/wiki/Glob_(programming)
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

dotnet add app/app.csproj reference lib/lib.csproj

dotnet add reference lib1/lib1.csproj lib2/lib2.csproj

dotnet add app/app.csproj reference **/*.csproj

Add multiple project references to the project in the current directory:

Add multiple project references using a globbing pattern on Linux/Unix:

dotnet list reference
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This topic applies to: ✓ .NET Core 1.x SDK and later versions

dotnet list reference - Lists project-to-project references.

dotnet list [<PROJECT>|<SOLUTION>] reference [-h|--help]

The dotnet list reference command provides a convenient option to list project references for a given project or
solution.

PROJECT | SOLUTION

Specifies the project or solution file to use for listing references. If not specified, the command searches the
current directory for a project file.

-h|--help

Prints out a short help for the command.

dotnet list app/app.csproj reference

dotnet list reference

List the project references for the specified project:

List the project references for the project in the current directory:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-list-reference.md

dotnet remove reference
12/10/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet remove reference - Removes project-to-project references.

dotnet remove [<PROJECT>] reference [-f|--framework] <PROJECT_REFERENCES> [-h|--help]

The dotnet remove reference command provides a convenient option to remove project references from a project.

PROJECT

Target project file. If not specified, the command searches the current directory for one.

PROJECT_REFERENCES

Project-to-project (P2P) references to remove. You can specify one or multiple projects. Glob patterns are
supported on Unix/Linux based terminals.

-h|--help

Prints out a short help for the command.

-f|--framework <FRAMEWORK>

Removes the reference only when targeting a specific framework.

Remove a project reference from the specified project:

dotnet remove app/app.csproj reference lib/lib.csproj

Remove multiple project references from the project in the current directory:

dotnet remove reference lib1/lib1.csproj lib2/lib2.csproj

Remove multiple project references using a glob pattern on Unix/Linux:

dotnet remove app/app.csproj reference **/*.csproj

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-remove-reference.md
https://en.wikipedia.org/wiki/Glob_(programming)
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

dotnet add package
9/19/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

NOTE

 Writing C:\Users\mairaw\AppData\Local\Temp\tmp95A8.tmp
info : Adding PackageReference for package 'Newtonsoft.Json' into project 'C:\projects\ToDo\ToDo.csproj'.
log : Restoring packages for C:\Temp\projects\consoleproj\consoleproj.csproj...
info : GET https://api.nuget.org/v3-flatcontainer/newtonsoft.json/index.json
info : OK https://api.nuget.org/v3-flatcontainer/newtonsoft.json/index.json 79ms
info : GET https://api.nuget.org/v3-flatcontainer/newtonsoft.json/12.0.1/newtonsoft.json.12.0.1.nupkg
info : OK https://api.nuget.org/v3-flatcontainer/newtonsoft.json/12.0.1/newtonsoft.json.12.0.1.nupkg 232ms
log : Installing Newtonsoft.Json 12.0.1.
info : Package 'Newtonsoft.Json' is compatible with all the specified frameworks in project
'C:\projects\ToDo\ToDo.csproj'.
info : PackageReference for package 'Newtonsoft.Json' version '12.0.1' added to file
'C:\projects\ToDo\ToDo.csproj'.

<PackageReference Include="Newtonsoft.Json" Version="12.0.1" />

Arguments

This article applies to: ✓ .NET Core 1.x SDK and later versions

dotnet add package - Adds a package reference to a project file.

dotnet add [<PROJECT>] package <PACKAGE_NAME> [-h|--help] [-f|--framework] [--interactive] [-n|--no-restore]
[--package-directory] [-s|--source] [-v|--version]

The dotnet add package command provides a convenient option to add a package reference to a project file. After
running the command, there's a compatibility check to ensure the package is compatible with the frameworks in
the project. If the check passes, a <PackageReference> element is added to the project file and dotnet restore is run.

Starting with .NET Core 2.0 SDK, you don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build and dotnet run . It's still a valid command in certain
scenarios where doing an explicit restore makes sense, such as continuous integration builds in Azure DevOps Services or in
build systems that need to explicitly control the time at which the restore occurs.

For example, adding Newtonsoft.Json to ToDo.csproj produces output similar to the following example:

The ToDo.csproj file now contains a <PackageReference> element for the referenced package.

PROJECT

Specifies the project file. If not specified, the command searches the current directory for one.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-add-package.md
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/nuget/consume-packages/package-references-in-project-files

Options

Examples

See also

PACKAGE_NAME

The package reference to add.

-f|--framework <FRAMEWORK>

Adds a package reference only when targeting a specific framework.

-h|--help

Prints out a short help for the command.

--interactive

Allows the command to stop and wait for user input or action (for example, to complete authentication).
Available since .NET Core 2.1 SDK, version 2.1.400 or later.

-n|--no-restore

Adds a package reference without performing a restore preview and compatibility check.

--package-directory <PACKAGE_DIRECTORY>

The directory where to restore the packages. The default package restore location is
%userprofile%\.nuget\packages on Windows and ~/.nuget/packages on macOS and Linux. For more

information, see Managing the global packages, cache, and temp folders in NuGet.

-s|--source <SOURCE>

The NuGet package source to use during the restore operation.

-v|--version <VERSION>

Version of the package. See NuGet package versioning.

dotnet add package Newtonsoft.Json

dotnet add ToDo.csproj package Microsoft.Azure.DocumentDB.Core -v 1.0.0

dotnet add package Microsoft.AspNetCore.StaticFiles -s https://dotnet.myget.org/F/dotnet-
core/api/v3/index.json

Add Newtonsoft.Json NuGet package to a project:

Add a specific version of a package to a project:

Add a package using a specific NuGet source:

Managing the global packages, cache, and temp folders in NuGet
NuGet package versioning

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/nuget/consume-packages/managing-the-global-packages-and-cache-folders
https://docs.microsoft.com/nuget/reference/package-versioning
https://docs.microsoft.com/nuget/consume-packages/managing-the-global-packages-and-cache-folders
https://docs.microsoft.com/nuget/reference/package-versioning

dotnet list package
9/19/2019 • 3 minutes to read • Edit Online

Name

Synopsis
dotnet list [<PROJECT>|<SOLUTION>] package [--config] [--framework] [--highest-minor] [--highest-patch]
 [--include-prerelease] [--include-transitive] [--interactive] [--outdated] [--source]
dotnet list package [-h|--help]

Description

Project 'SentimentAnalysis' has the following package references
 [netcoreapp2.1]:
 Top-level Package Requested Resolved
 > Microsoft.ML 0.11.0 0.11.0
 > Microsoft.NETCore.App (A) [2.1.0,) 2.1.0

(A) : Auto-referenced package.

The following sources were used:
 https://api.nuget.org/v3/index.json

Project `SentimentAnalysis` has the following updates to its packages
 [netcoreapp2.1]:
 Top-level Package Requested Resolved Latest
 > Microsoft.ML 0.11.0 0.11.0 1.0.0-preview

This article applies to: ✓ .NET Core 2.2 SDK and later versions

dotnet list package - Lists the package references for a project or solution.

The dotnet list package command provides a convenient option to list all NuGet package references for a specific
project or a solution. You first need to build the project in order to have the assets needed for this command to
process. The following example shows the output of the dotnet list package command for the SentimentAnalysis
project:

The Requested column refers to the package version specified in the project file and can be a range. The Resolved
column lists the version that the project is currently using and is always a single value. The packages displaying an
(A) right next to their names represent implicit package references that are inferred from your project settings (
Sdk type, <TargetFramework> or <TargetFrameworks> property, etc.)

Use the --outdated option to find out if there are newer versions available of the packages you're using in your
projects. By default, --outdated lists the latest stable packages unless the resolved version is also a prerelease
version. To include prerelease versions when listing newer versions, also specify the --include-prerelease option.
The following examples shows the output of the dotnet list package --outdated --include-prerelease command
for the same project as the previous example:

If you need to find out whether your project has transitive dependencies, use the --include-transitive option.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-list-package.md
https://github.com/dotnet/samples/tree/master/machine-learning/tutorials/SentimentAnalysis

Project 'HelloPlugin' has the following package references
 [netcoreapp3.0]:
 Top-level Package Requested Resolved
 > Microsoft.NETCore.Platforms (A) [3.0.0-preview3.19128.7,) 3.0.0-preview3.19128.7
 > Microsoft.WindowsDesktop.App (A) [3.0.0-preview3-27504-2,) 3.0.0-preview3-27504-2

 Transitive Package Resolved
 > Microsoft.NETCore.Targets 2.0.0
 > PluginBase 1.0.0

(A) : Auto-referenced package.

Arguments

Options

Transitive dependencies occur when you add a package to your project that in turn relies on another package. The
following example shows the output from running the dotnet list package --include-transitive command for the
HelloPlugin project, which displays top-level packages and the packages they depend on:

PROJECT | SOLUTION

The project or solution file to operate on. If not specified, the command searches the current directory for one. If
more than one solution or project is found, an error is thrown.

--config <SOURCE>

The NuGet sources to use when searching for newer packages. Requires the --outdated option.

--framework <FRAMEWORK>

Displays only the packages applicable for the specified target framework. To specify multiple frameworks,
repeat the option multiple times. For example: --framework netcoreapp2.2 --framework netstandard2.0 .

-h|--help

Prints out a short help for the command.

--highest-minor

Considers only the packages with a matching major version number when searching for newer packages.
Requires the --outdated option.

--highest-patch

Considers only the packages with a matching major and minor version numbers when searching for newer
packages. Requires the --outdated option.

--include-prerelease

Considers packages with prerelease versions when searching for newer packages. Requires the --outdated

option.

--include-transitive

Lists transitive packages, in addition to the top-level packages. When specifying this option, you get a list of
packages that the top-level packages depend on.

--interactive

https://github.com/dotnet/samples/tree/master/core/extensions/AppWithPlugin/HelloPlugin
https://docs.microsoft.com/en-us/dotnet/standard/frameworks

Examples

Allows the command to stop and wait for user input or action. For example, to complete authentication.
Available since .NET Core 3.0 SDK.

--outdated

Lists packages that have newer versions available.

-s|--source <SOURCE>

The NuGet sources to use when searching for newer packages. Requires the --outdated option.

dotnet list SentimentAnalysis.csproj package

dotnet list package --outdated --include-prerelease

dotnet list package --framework netcoreapp3.0

List package references of a specific project:

List package references that have newer versions available, including prerelease versions:

List package references for a specific target framework:

dotnet remove package
5/15/2019 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This article applies to: ✓ .NET Core 1.x SDK ✓ .NET Core 2.x SDK

dotnet remove package - Removes package reference from a project file.

dotnet remove [<PROJECT>] package <PACKAGE_NAME> [-h|--help]

The dotnet remove package command provides a convenient option to remove a NuGet package reference from a
project.

PROJECT

Specifies the project file. If not specified, the command searches the current directory for one.

PACKAGE_NAME

The package reference to remove.

-h|--help

Prints out a short help for the command.

Removes Newtonsoft.Json NuGet package from a project in the current directory:

dotnet remove package Newtonsoft.Json

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-remove-package.md

.NET Core additional tools overview
10/22/2019 • 2 minutes to read • Edit Online

WCF Web Service Reference tool

WCF dotnet-svcutil tool

WCF dotnet-svcutil.xmlserializer tool

XML Serializer Generator

This section compiles a list of tools that support and extend the .NET Core functionality, in addition to the .NET
Core command-line interface (CLI) tools.

The WCF (Windows Communication Foundation) Web Service Reference is a Visual Studio connected service
provider that made its debut in Visual Studio 2017 version 15.5. This tool retrieves metadata from a web service in
the current solution, on a network location, or from a WSDL file, and generates a source file compatible with .NET
Core, defining a WCF proxy class with methods that you can use to access the web service operations.

The WCF (Windows Communication Foundation) dotnet-svcutil tool is a .NET Core CLI tool that retrieves
metadata from a web service on a network location or from a WSDL file, and generates a source file compatible
with .NET Core, defining a WCF proxy class with methods that you can use to access the web service operations.
The dotnet-svcutil tool is an alternative option to the WCF Web Service Reference Visual Studio connected
service provider, which first shipped with Visual Studio 2017 version 15.5. The dotnet-svcutil tool as a .NET Core
CLI tool, is available cross-platform on Linux, macOS, and Windows.

On the .NET Framework, you can pre-generate a serialization assembly using the svcutil tool. The dotnet-
svcutil.xmlserializer NuGet package provides similar functionality on .NET Core. It pre-generates C# serialization
code for the types in the client application that are used by the WCF Service Contract and that can be serialized by
the XmlSerializer. This improves the startup performance of XML serialization when serializing or deserializing
objects of those types.

Like the Xml Serializer Generator (sgen.exe) for the .NET Framework, the Microsoft.XmlSerializer.Generator NuGet
package is the solution for .NET Core and .NET Standard libraries. It creates an XML serialization assembly for
types contained in an assembly to improve the startup performance of XML serialization when serializing or de-
serializing objects of those types using XmlSerializer.

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/index.md
https://docs.microsoft.com/visualstudio/releasenotes/vs2017-relnotes-v15.5#WCFTools
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-serializer-generator-tool-sgen-exe
https://www.nuget.org/packages/Microsoft.XmlSerializer.Generator
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer

Use the WCF Web Service Reference Provider Tool
10/31/2019 • 3 minutes to read • Edit Online

IMPORTANT

Prerequisites

How to use the extension

NOTE

Over the years, many Visual Studio developers have enjoyed the productivity that the Add Service Reference
tool provided when their .NET Framework projects needed to access web services. The WCF Web Service
Reference tool is a Visual Studio connected service extension that provides an experience like the Add Service
Reference functionality for .NET Core and ASP.NET Core projects. This tool retrieves metadata from a web service
in the current solution, on a network location, or from a WSDL file, and generates a .NET Core compatible source
file containing Windows Communication Foundation (WCF) client proxy code that you can use to access the web
service.

You should only reference services from a trusted source. Adding references from an untrusted source may compromise
security.

Visual Studio 2017 version 15.5 or later versions

The WCF Web Service Reference option is applicable to projects created using the following project templates:

Visual C# > .NET Core
Visual C# > .NET Standard
Visual C# > Web > ASP.NET Core Web Application

Using the ASP.NET Core Web Application project template as an example, this article walks you through
adding a WCF service reference to the project:

1. In Solution Explorer, double-click the Connected Services node of the project (for a .NET Core or .NET
Standard project this option is available when you right-click on the Dependencies node of the project in
Solution Explorer).

The Connected Services page appears as shown in the following image:

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/wcf-web-service-reference-guide.md
https://docs.microsoft.com/visualstudio/data-tools/how-to-add-update-or-remove-a-wcf-data-service-reference
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs

2. On the Connected Services page, click Microsoft WCF Web Service Reference Provider. This brings
up the Configure WCF Web Service Reference wizard:

3. Select a service.

3a. There are several services search options available within the Configure WCF Web Service
Reference wizard:

To search for services defined in the current solution, click the Discover button.
To search for services hosted at a specified address, enter a service URL in the Address box and click the
Go button.
To select a WSDL file that contains the web service metadata information, click the Browse button.

3b. Select the service from the search results list in the Services box. If needed, enter the namespace for
the generated code in the corresponding Namespace text box.

NOTE

3c. Click the Next button to open the Data Type Options and the Client Options pages. Alternatively,
click the Finish button to use the default options.

4. The Data Type Options form enables you to refine the generated service reference configuration settings:

The Reuse types in referenced assemblies check box option is useful when data types needed for service
reference code generation are defined in one of your project's referenced assemblies. It's important to reuse those
existing data types to avoid compile-time type clash or runtime issues.

There may be a delay while type information is loaded, depending on the number of project dependencies
and other system performance factors. The Finish button is disabled during loading unless the Reuse
types in referenced assemblies check box is unchecked.

5. Click Finish when you are done.

While displaying progress, the tool:

Downloads metadata from the WCF service.
Generates the service reference code in a file named reference.cs, and adds it to your project under the
Connected Services node.
Updates the project file (.csproj) with NuGet package references required to compile and run on the target
platform.

See also

Feedback & questions

Release notes

When these processes complete, you can create an instance of the generated WCF client type and invoke the
service operations.

Get started with Windows Communication Foundation applications
Windows Communication Foundation services and WCF data services in Visual Studio
WCF supported features on .NET Core

If you have any questions or feedback, report it at Developer Community using the Report a problem tool.

Refer to the Release notes for updated release information, including known issues.

https://docs.microsoft.com/en-us/dotnet/framework/wcf/getting-started-tutorial
https://docs.microsoft.com/visualstudio/data-tools/windows-communication-foundation-services-and-wcf-data-services-in-visual-studio
https://github.com/dotnet/wcf/blob/master/release-notes/SupportedFeatures-v2.1.0.md
https://developercommunity.visualstudio.com/
https://docs.microsoft.com/visualstudio/ide/how-to-report-a-problem-with-visual-studio
https://github.com/dotnet/wcf/blob/master/release-notes/WCF-Web-Service-Reference-notes.md

WCF dotnet-svcutil tool for .NET Core
10/22/2019 • 3 minutes to read • Edit Online

IMPORTANT

Prerequisites

Getting started

[ServiceContract]
public interface ISayHello
{
 [OperationContract]
 string Hello(string name);
}

The Windows Communication Foundation (WCF) dotnet-svcutil tool is a .NET Core CLI tool that retrieves
metadata from a web service on a network location or from a WSDL file, and generates a WCF class containing
client proxy methods that access the web service operations.

Similar to the Service Model Metadata - svcutil tool for .NET Framework projects, the dotnet-svcutil is a
command-line tool for generating a web service reference compatible with .NET Core and .NET Standard projects.

The dotnet-svcutil tool is an alternative option to the WCF Web Service Reference Visual Studio connected
service provider that first shipped with Visual Studio 2017 version 15.5. The dotnet-svcutil tool as a .NET Core
CLI tool, is available cross-platform on Linux, macOS, and Windows.

You should only reference services from a trusted source. Adding references from an untrusted source may compromise
security.

dotnet-svcutil 2.x
dotnet-svcutil 1.x

.NET Core 2.1 SDK or later versions
Your favorite code editor

The following example walks you through the steps required to add a web service reference to a .NET Core web
project and invoke the service. You'll create a .NET Core web application named HelloSvcutil and add a reference
to a web service that implements the following contract:

For this example, let's assume the web service will be hosted at the following address:
http://contoso.com/SayHello.svc

From a Windows, macOS, or Linux command window perform the following steps:

mkdir HelloSvcutil
cd HelloSvcutil

1. Create a directory named HelloSvcutil for your project and make it your current directory, as in the
following example:

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/dotnet-svcutil-guide.md
https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe
https://dotnet.microsoft.com/download

Using the Service Reference

dotnet new web

dotnet tool install --global dotnet-svcutil

dotnet-svcutil http://contoso.com/SayHello.svc

2. Create a new C# web project in that directory using the dotnet new command as follows:

3. Install the dotnet-svcutil NuGet package as a CLI tool:

dotnet-svcutil 2.x
dotnet-svcutil 1.x

4. Run the dotnet-svcutil command to generate the web service reference file as follows:

dotnet-svcutil 2.x
dotnet-svcutil 1.x

The generated file is saved as HelloSvcutil/ServiceReference/Reference.cs. The dotnet-svcutil tool also adds to the
project the appropriate WCF packages required by the proxy code as package references.

dotnet restore

using ServiceReference;

1. Restore the WCF packages using the dotnet restore command as follows:

2. Find the name of the client class and operation you want to use. Reference.cs will contain a class that
inherits from System.ServiceModel.ClientBase , with methods that can be used to call operations on the
service. In this example, you want to call the SayHello service's Hello operation.
ServiceReference.SayHelloClient is the name of the client class, and has a method called HelloAsync that

can be used to call the operation.

3. Open the Startup.cs file in your editor, and add a using statement for the service reference namespace at
the top:

4. Edit the Configure method to invoke the web service. You do this by creating an instance of the class that
inherits from ClientBase and calling the method on the client object:

https://nuget.org/packages/dotnet-svcutil

dotnet-svcutil --help

Feedback & questions

Release notes

Information

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 {
 var client = new SayHelloClient();
 var response = await client.HelloAsync();
 await context.Response.WriteAsync(response);
 });
}

dotnet run

5. Run the application using the dotnet run command as follows:

6. Navigate to the URL listed in the console (for example, http://localhost:5000) in your web browser.

You should see the following output: "Hello dotnet-svcutil!"

For a detailed description of the dotnet-svcutil tool parameters, invoke the tool passing the help parameter as
follows:

dotnet-svcutil 2.x
dotnet-svcutil 1.x

If you have any questions or feedback, open an issue on GitHub. You can also review any existing questions or
issues at the WCF repo on GitHub.

Refer to the Release notes for updated release information, including known issues.

dotnet-svcutil NuGet Package

https://github.com/dotnet/wcf/issues/new
https://github.com/dotnet/wcf/issues?utf8=%E2%9C%93&q=is:issue label:tooling
https://github.com/dotnet/wcf/blob/master/release-notes/dotnet-svcutil-notes.md
https://nuget.org/packages/dotnet-svcutil

Using dotnet-svcutil.xmlserializer on .NET Core
9/19/2019 • 2 minutes to read • Edit Online

Prerequisites

Getting started

The dotnet-svcutil.xmlserializer NuGet package can pre-generate a serialization assembly for .NET Core
projects. It pre-generates C# serialization code for the types in the client application that are used by the WCF
Service Contract and that can be serialized by the XmlSerializer. This improves the startup performance of XML
serialization when serializing or deserializing objects of those types.

.NET Core 2.1 SDK or later
Your favorite code editor

You can use the command dotnet --info to check which versions of .NET Core SDK and runtime you already
have installed.

To use dotnet-svcutil.xmlserializer in a .NET Core console application:

 [ServiceContract]
 public interface IService1
 {
 [XmlSerializerFormat]
 [OperationContract(Action = "http://tempuri.org/IService1/GetData", ReplyAction =
"http://tempuri.org/IService1/GetDataResponse")]
 string GetData(int value);
 }

dotnet new console --name MyWCFClient

<TargetFramework>netcoreapp2.1</TargetFramework>

dotnet add package System.ServiceModel.Http

1. Create a WCF Service named 'MyWCFService' using the default template 'WCF Service Application' in
.NET Framework. Add [XmlSerializerFormat] attribute on the service method like the following:

2. Create a .NET Core console application as WCF client application that targets at .NET Core 2.1 or later
versions. For example, create an app named 'MyWCFClient' with the following command:

To ensure your project is targeting .NET Core 2.1 or later, inspect the TargetFramework XML element in your
project file:

3. Add a package reference to System.ServiceModel.Http by running the following command:

4. Add the WCF Client code:

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/dotnet-svcutil.xmlserializer-guide.md
https://dotnet.microsoft.com/download

using System.ServiceModel;

 class Program
 {
 static void Main(string[] args)
 {
 var myBinding = new BasicHttpBinding();
 var myEndpoint = new EndpointAddress("http://localhost:2561/Service1.svc"); //Fill your
service url here
 var myChannelFactory = new ChannelFactory<IService1>(myBinding, myEndpoint);
 IService1 client = myChannelFactory.CreateChannel();
 string s = client.GetData(1);
 ((ICommunicationObject)client).Close();
 }
 }

[ServiceContract]
public interface IService1
{
 [XmlSerializerFormat]
 [OperationContract(Action = "http://tempuri.org/IService1/GetData", ReplyAction =
"http://tempuri.org/IService1/GetDataResponse")]
 string GetData(int value);
}

dotnet add package dotnet-svcutil.xmlserializer

<ItemGroup>
 <DotNetCliToolReference Include="dotnet-svcutil.xmlserializer" Version="1.0.0" />
</ItemGroup>

5. Add a reference to the dotnet-svcutil.xmlserializer package by running the following command:

Running the command should add an entry to your project file similar to this:

6. Build the application by running dotnet build . If everything succeeds, an assembly named
MyWCFClient.XmlSerializers.dll is generated in the output folder. If the tool failed to generate the assembly,
you'll see warnings in the build output.

7. Start the WCF service by, for example, running http://localhost:2561/Service1.svc in the browser. Then
start the client application, and it will automatically load and use the pre-generated serializers at runtime.

Using Microsoft XML Serializer Generator on .NET
Core
10/17/2019 • 2 minutes to read • Edit Online

Prerequisites

TIP

Use Microsoft XML Serializer Generator in a .NET Core console
application

Create a .NET Core console application

dotnet new console

Add a reference to the Microsoft.XmlSerializer.Generator package in the MyApp project

dotnet add package Microsoft.XmlSerializer.Generator -v 1.0.0

This tutorial teaches you how to use the Microsoft XML Serializer Generator in a C# .NET Core application. During
the course of this tutorial, you learn:

How to create a .NET Core app
How to add a reference to the Microsoft.XmlSerializer.Generator package
How to edit your MyApp.csproj to add dependencies
How to add a class and an XmlSerializer
How to build and run the application

Like the Xml Serializer Generator (sgen.exe) for the .NET Framework, the Microsoft.XmlSerializer.Generator
NuGet package is the equivalent for .NET Core and .NET Standard projects. It creates an XML serialization
assembly for types contained in an assembly to improve the startup performance of XML serialization when
serializing or de-serializing objects of those types using XmlSerializer.

To complete this tutorial:

.NET Core 2.1 SDK or later.
Your favorite code editor.

Need to install a code editor? Try Visual Studio!

The following instructions show you how to use XML Serializer Generator in a .NET Core console application.

Open a command prompt and create a folder named MyApp. Navigate to the folder you created and type the
following command:

Use the dotnet add package command to add the reference in your project.

Type:

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/xml-serializer-generator.md
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-serializer-generator-tool-sgen-exe
https://www.nuget.org/packages/Microsoft.XmlSerializer.Generator
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer
https://dotnet.microsoft.com/download
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs

Verify changes to MyApp.csproj after adding the package

<ItemGroup>
 <PackageReference Include="Microsoft.XmlSerializer.Generator" Version="1.0.0" />
</ItemGroup>

Add another ItemGroup section for .NET Core CLI Tool support

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.XmlSerializer.Generator" Version="1.0.0" />
</ItemGroup>

Add a class in the application

public class MyClass
{
 public int Value;
}

Create an XmlSerializer for MyClass

var serializer = new System.Xml.Serialization.XmlSerializer(typeof(MyClass));

Build and run the application

dotnet run

NOTE

IMPORTANT

Open your code editor and let's get started! We're still working from the MyApp directory we built the app in.

Open MyApp.csproj in your text editor.

After running the dotnet add package command, the following lines are added to your MyApp.csproj project file:

Add the following lines after the ItemGroup section that we inspected:

Open Program.cs in your text editor. Add the class named MyClass in Program.cs.

Add the following line inside Main to create an XmlSerializer for MyClass:

Still within the MyApp folder, run the application via dotnet run and it automatically loads and uses the pre-
generated serializers at runtime.

Type the following command in your console window:

dotnet run calls dotnet build to ensure that the build targets have been built, and then calls dotnet <assembly.dll>

to run the target application.

The commands and steps shown in this tutorial to run your application are used during development time only. Once you're
ready to deploy your app, take a look at the different deployment strategies for .NET Core apps and the dotnet publish

command.

Related resources

If everything succeeds, an assembly named MyApp.XmlSerializers.dll is generated in the output folder.

Congratulations! You have just:

Created a .NET Core app.
Added a reference to the Microsoft.XmlSerializer.Generator package.
Edited your MyApp.csproj to add dependencies.
Added a class and an XmlSerializer.
Built and ran the application.

Introducing XML Serialization
How to: Serialize Using XmlSerializer (C#)
How to: Serialize Using XmlSerializer (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/standard/serialization/introducing-xml-serialization
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-serialize-using-xmlserializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/how-to-serialize-using-xmlserializer

Overview of the porting process from .NET
Framework to .NET Core
10/29/2019 • 2 minutes to read • Edit Online

Overview of the porting process

You might have code that currently runs on the .NET Framework that you're interested in porting to .NET Core.
This article provides:

An overview of the porting process.
A list of the tools you may find helpful when you're porting your code to .NET Core.

We recommend you to use the following process when porting your project to .NET Core:

1. Retarget all projects you wish to port to target the .NET Framework 4.7.2 or higher.

This step ensures that you can use API alternatives for .NET Framework-specific targets when .NET Core
doesn't support a particular API.

2. Use the .NET Portability Analyzer to analyze your assemblies and see if they're portable to .NET Core.

The API Portability Analyzer tool analyzes your compiled assemblies and generates a report. This report
shows a high-level portability summary and a breakdown of each API you're using that isn't available on
NET Core.

3. Install the .NET API analyzer into your projects to identify APIs throwing PlatformNotSupportedException
on some platforms and some other potential compatibility issues.

This tool is similar to the portability analyzer, but instead of analyzing if things can build on .NET Core, it will
analyze if you're using an API in a way that will throw the PlatformNotSupportedException at runtime.
Although this isn't common if you're moving from .NET Framework 4.7.2 or higher, it's good to check.

4. Convert all of your packages.config dependencies to the PackageReference format with the conversion tool
in Visual Studio.

This step involves converting your dependencies from the legacy packages.config format. packages.config

doesn't work on .NET Core, so this conversion is required if you have package dependencies.

5. Create new projects for .NET Core and copy over source files, or attempt to convert your existing project file
with a tool.

.NET Core uses a simplified (and different) project file format than .NET Framework. You'll need to convert
your project files into this format to continue.

6. Port your test code.

Because porting to .NET Core is such a significant change to your codebase, it's highly recommended to get
your tests ported, so that you can run tests as you port your code over. MSTest, xUnit, and NUnit all work
on .NET Core.

Additionally, you can attempt to port smaller solutions or individual projects to the .NET Core project file format
with the dotnet try-convert tool in one operation. dotnet try-convert is not guaranteed to work for all your
projects, and it may cause subtle changes in behavior that you may find that you depended on. It should be used as
a starting point that automates the basic things that can be automated. It isn't a guaranteed solution to migrating a

https://github.com/dotnet/docs/blob/master/docs/core/porting/index.md
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/api-analyzer
https://docs.microsoft.com/dotnet/api/system.platformnotsupportedexception
https://docs.microsoft.com/dotnet/api/system.platformnotsupportedexception
https://docs.microsoft.com/nuget/consume-packages/package-references-in-project-files
https://docs.microsoft.com/nuget/consume-packages/migrate-packages-config-to-package-reference
https://github.com/dotnet/try-convert

project.

N E X T

.NET Framework technologies unavailable on .NET
Core
11/7/2019 • 2 minutes to read • Edit Online

AppDomains

Remoting

Code Access Security (CAS)

Several technologies available to .NET Framework libraries aren't available for use with .NET Core, such as
AppDomains, Remoting, Code Access Security (CAS), Security Transparency, and System.EnterpriseServices. If
your libraries rely on one or more of these technologies, consider the alternative approaches outlined below. For
more information on API compatibility, see the .NET Core breaking changes article.

Just because an API or technology isn't currently implemented doesn't imply it's intentionally unsupported. You
should first search the GitHub repositories for .NET Core to see if a particular issue you encounter is by design, but
if you cannot find such an indicator, please file an issue in the dotnet/corefx repository issues at GitHub to ask for
specific APIs and technologies. Porting requests in the issues are marked with the port-to-core label.

Application domains (AppDomains) isolate apps from one another. AppDomains require runtime support and are
generally quite expensive. Creating additional app domains is not supported. We don't plan on adding this
capability in future. For code isolation, we recommend separate processes or using containers as an alternative. For
the dynamic loading of assemblies, we recommend the new AssemblyLoadContext class.

To make code migration from .NET Framework easier, .NET Core exposes some of the AppDomain API surface.
Some of the APIs function normally (for example, AppDomain.UnhandledException), some members do nothing
(for example, SetCachePath), and some of them throw PlatformNotSupportedException (for example,
CreateDomain). Check the types you use against the System.AppDomain reference source in the dotnet/corefx
GitHub repository, making sure to select the branch that matches your implemented version.

.NET Remoting was identified as a problematic architecture. It's used for cross-AppDomain communication, which
is no longer supported. Also, Remoting requires runtime support, which is expensive to maintain. For these
reasons, .NET Remoting isn't supported on .NET Core, and we don't plan on adding support for it in the future.

For communication across processes, consider inter-process communication (IPC) mechanisms as an alternative to
Remoting, such as the System.IO.Pipes or the MemoryMappedFile class.

Across machines, use a network-based solution as an alternative. Preferably, use a low-overhead plain text
protocol, such as HTTP. The Kestrel web server , the web server used by ASP.NET Core, is an option here. Also
consider using System.Net.Sockets for network-based, cross-machine scenarios. For more options, see .NET Open
Source Developer Projects: Messaging.

Sandboxing, which relies on the runtime or the framework to constrain which resources a managed application or
library uses or runs, isn't supported on .NET Framework and therefore is also not supported on .NET Core. There
are too many cases in the .NET Framework and the runtime where an elevation of privileges occurs to continue
treating CAS as a security boundary. In addition, CAS makes the implementation more complicated and often has
correctness-performance implications for applications that don't intend to use it.

Use security boundaries provided by the operating system, such as virtualization, containers, or user accounts for

https://github.com/dotnet/docs/blob/master/docs/core/porting/net-framework-tech-unavailable.md
https://docs.microsoft.com/en-us/dotnet/core/compatibility/breaking-changes
https://github.com/dotnet/corefx/issues
https://github.com/dotnet/corefx/labels/port-to-core
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.appdomain
https://docs.microsoft.com/dotnet/api/system.appdomain.unhandledexception
https://docs.microsoft.com/dotnet/api/system.appdomain.setcachepath
https://docs.microsoft.com/dotnet/api/system.platformnotsupportedexception
https://docs.microsoft.com/dotnet/api/system.appdomain.createdomain
https://github.com/dotnet/corefx/blob/master/src/Common/src/CoreLib/System/AppDomain.cs
https://github.com/dotnet/corefx
https://docs.microsoft.com/dotnet/api/system.io.pipes
https://docs.microsoft.com/dotnet/api/system.io.memorymappedfiles.memorymappedfile
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/dotnet/api/system.net.sockets
https://github.com/Microsoft/dotnet/blob/master/dotnet-developer-projects.md#messaging
https://docs.microsoft.com/en-us/dotnet/framework/misc/code-access-security

Security Transparency

System.EnterpriseServices

running processes with the minimum set of privileges.

Similar to CAS, Security Transparency separates sandboxed code from security critical code in a declarative fashion
but is no longer supported as a security boundary. This feature is heavily used by Silverlight.

Use security boundaries provided by the operating system, such as virtualization, containers, or user accounts for
running processes with the least set of privileges.

System.EnterpriseServices (COM+) is not supported by .NET Core.

N E X T

https://docs.microsoft.com/en-us/dotnet/framework/misc/security-transparent-code

Analyze your dependencies to port code to .NET
Core
10/23/2019 • 5 minutes to read • Edit Online

Migrate your NuGet packages to PackageReference

Upgrade your NuGet packages

Analyze your package dependencies

Analyze NuGet packages using nuget.org

Analyze NuGet packages using NuGet Package Explorer

To port your code to .NET Core or .NET Standard, you must understand your dependencies. External dependencies
are the NuGet packages or .dll s you reference in your project, but that you don't build yourself.

.NET Core uses PackageReference to specify package dependencies. If you're using packages.config to specify your
packages in your project, you need to convert it to the PackageReference format because packages.config isn't
supported in .NET Core.

To learn how to migrate, see the Migrate from packages.config to PackageReference article.

After your migrating your project to the PackageReference format, you need to verify if your packages are
compatible with .NET Core.

First, upgrade your packages to the latest version that you can. This can be done with the NuGet Package Manager
UI in Visual Studio. It's likely that newer versions of your package dependencies are already compatible with .NET
Core.

If you haven't already verified that your converted and upgraded package dependencies work on .NET Core, there
are a few ways that you can achieve that:

You can see the Target Framework Monikers (TFMs) that each package supports on nuget.org under the
Dependencies section of the package page.

Although using the site is an easier method to verify the compatibility, Dependencies information isn't available
on the site for all packages.

A NuGet package is itself a set of folders that contain platform-specific assemblies. So you need to check if there's
a folder that contains a compatible assembly inside the package.

The easiest way to inspect NuGet Package folders is to use the NuGet Package Explorer tool. After installing it, use
the following steps to see the folder names:

1. Open the NuGet Package Explorer.
2. Click Open package from online feed.
3. Search for the name of the package.
4. Select the package name from the search results and click open.
5. Expand the lib folder on the right-hand side and look at folder names.

Look for a folder with names using one the following patterns: netstandardX.Y or netcoreappX.Y .

https://github.com/dotnet/docs/blob/master/docs/core/porting/third-party-deps.md
https://docs.microsoft.com/nuget/consume-packages/package-references-in-project-files
https://docs.microsoft.com/nuget/reference/packages-config
https://docs.microsoft.com/nuget/reference/migrate-packages-config-to-package-reference
https://www.nuget.org/
https://github.com/NuGetPackageExplorer/NuGetPackageExplorer

IMPORTANT

.NET Framework compatibility mode

<ItemGroup>
 <PackageReference Include="Huitian.PowerCollections" Version="1.0.0" NoWarn="NU1701" />
</ItemGroup>

What to do when your NuGet package dependency doesn't run on
.NET Core

These values are the Target Framework Monikers (TFMs) that map to versions of the .NET Standard, .NET Core,
and traditional Portable Class Library (PCL) profiles that are compatible with .NET Core.

When looking at the TFMs that a package supports, note that netcoreapp* , while compatible, is for .NET Core projects
only and not for .NET Standard projects. A library that only targets netcoreapp* and not netstandard* can only be
consumed by other .NET Core apps.

After analyzing the NuGet packages, you might find that they only target the .NET Framework.

Starting with .NET Standard 2.0, the .NET Framework compatibility mode was introduced. This compatibility mode
allows .NET Standard and .NET Core projects to reference .NET Framework libraries. Referencing .NET
Framework libraries doesn't work for all projects, such as if the library uses Windows Presentation Foundation
(WPF) APIs, but it does unblock many porting scenarios.

When you reference NuGet packages that target the .NET Framework in your project, such as
Huitian.PowerCollections, you get a package fallback warning (NU1701) similar to the following example:

NU1701: Package ‘Huitian.PowerCollections 1.0.0’ was restored using ‘.NETFramework,Version=v4.6.1’ instead of
the project target framework ‘.NETStandard,Version=v2.0’. This package may not be fully compatible with your
project.

That warning is displayed when you add the package and every time you build to make sure you test that package
with your project. If your project is working as expected, you can suppress that warning by editing the package
properties in Visual Studio or by manually editing the project file in your favorite code editor.

To suppress the warning by editing the project file, find the PackageReference entry for the package you want to
suppress the warning for and add the NoWarn attribute. The NoWarn attribute accepts a comma-separated list of all
the warning IDs. The following example shows how to suppress the NU1701 warning for the
Huitian.PowerCollections package by editing your project file manually:

For more information on how to suppress compiler warnings in Visual Studio, see Suppressing warnings for
NuGet packages.

There are a few things you can do if a NuGet package you depend on doesn't run on .NET Core:

1. If the project is open source and hosted somewhere like GitHub, you can engage the developers directly.
2. You can contact the author directly on nuget.org. Search for the package and click Contact Owners on the left-

hand side of the package's page.
3. You can search for another package that runs on .NET Core that accomplishes the same task as the package

you were using.
4. You can attempt to write the code the package was doing yourself.
5. You could eliminate the dependency on the package by changing the functionality of your app, at least until a

compatible version of the package becomes available.

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://www.nuget.org/packages/Huitian.PowerCollections
https://docs.microsoft.com/nuget/reference/errors-and-warnings/nu1701
https://docs.microsoft.com/visualstudio/ide/how-to-suppress-compiler-warnings#suppress-warnings-for-nuget-packages
https://www.nuget.org/

Analyze dependencies that aren't NuGet packages

Remember that open-source project maintainers and NuGet package publishers are often volunteers. They
contribute because they care about a given domain, do it for free, and often have a different daytime job. So be
mindful of that when contacting them to ask for .NET Core support.

If you can't resolve your issue with any of the above, you may have to port to .NET Core at a later date.

The .NET Team would like to know which libraries are the most important to support with .NET Core. You can
send an email to dotnet@microsoft.com about the libraries you'd like to use.

You may have a dependency that isn't a NuGet package, such as a DLL in the file system. The only way to
determine the portability of that dependency is to run the .NET Portability Analyzer tool. The tool can analyze
assemblies that target the .NET Framework and identify APIs that aren't portable to other .NET platforms such as
.NET Core. You can run the tool as a console application or as a Visual Studio extension.

N E X T

https://github.com/Microsoft/dotnet-apiport
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer

Port .NET Framework libraries to .NET Core
8/28/2019 • 6 minutes to read • Edit Online

Prerequisites

Retargeting your .NET Framework code to .NET Framework 4.7.2

Determining the portability of your code

Learn how to port .NET Framework library code to .NET Core, to run cross-platform and expand the reach of the
apps that use it.

This article assumes that you:

Are using Visual Studio 2017 or later.

Understand the recommended porting process.
Have resolved any issues with third-party dependencies.

.NET Core isn't supported on earlier versions of Visual Studio

You should also become familiar with the content of the following topics:

.NET Standard
This topic describes the formal specification of .NET APIs that are intended to be available on all .NET
implementations.

Packages, Metapackages and Frameworks
This article discusses how .NET Core defines and uses packages and how packages support code running on
multiple .NET implementations.

Developing Libraries with Cross Platform Tools
This topic explains how to write libraries for .NET using cross-platform CLI tools.

Additions to the csproj format for .NET Core
This article outlines the changes that were added to the project file as part of the move to csproj and MSBuild.

Porting to .NET Core - Analyzing your Third-Party Party Dependencies
This topic discusses the portability of third-party dependencies and what to do when a NuGet package
dependency doesn't run on .NET Core.

If your code isn't targeting .NET Framework 4.7.2, we recommended that you retarget to .NET Framework 4.7.2.
This ensures the availability of the latest API alternatives for cases where the .NET Standard doesn't support
existing APIs.

For each of your projects in Visual Studio you wish to port, do the following:

1. Right-click on the project and select Properties.
2. In the Target Framework dropdown, select .NET Framework 4.7.2.
3. Recompile your projects.

Because your projects now target .NET Framework 4.7.2, use that version of the .NET Framework as your base for
porting code.

The next step is to run the API Portability Analyzer (ApiPort) to generate a portability report for analysis.

https://github.com/dotnet/docs/blob/master/docs/core/porting/libraries.md
https://docs.microsoft.com/en-us/dotnet/standard/net-standard

Dealing primarily with the compiler

Staying on the .NET Framework until portability issues are resolved

Developing a comprehensive plan of attack

Make sure you understand the API Portability Analyzer (ApiPort) and how to generate portability reports for
targeting .NET Core. How you do this likely varies based on your needs and personal tastes. What follows are a
few different approaches. You may find yourself mixing steps of these approaches depending on how your code is
structured.

This approach may be the best for small projects or projects which don't use many .NET Framework APIs. The
approach is simple:

1. Optionally, run ApiPort on your project. If you run ApiPort, gain knowledge from the report on issues you'll
need to address.

2. Copy all of your code over into a new .NET Core project.
3. While referring to the portability report (if generated), solve compiler errors until the project fully compiles.

Although this approach is unstructured, the code-focused approach often leads to resolving issues quickly and
might be the best approach for smaller projects or libraries. A project that contains only data models might be an
ideal candidate for this approach.

This approach might be the best if you prefer to have code that compiles during the entire process. The approach is
as follows:

1. Run ApiPort on a project.
2. Address issues by using different APIs that are portable.
3. Take note of any areas where you're prevented from using a direct alternative.
4. Repeat the prior steps for all projects you're porting until you're confident each is ready to be copied over into a

new .NET Core project.
5. Copy the code into a new .NET Core project.
6. Work out any issues where you noted that a direct alternative doesn't exist.

This careful approach is more structured than simply working out compiler errors, but it's still relatively code-
focused and has the benefit of always having code that compiles. The way you resolve certain issues that couldn't
be addressed by just using another API varies greatly. You may find that you need to develop a more
comprehensive plan for certain projects, which is covered as the next approach.

This approach might be best for larger and more complex projects, where restructuring code or completely
rewriting certain areas of code might be necessary to support .NET Core. The approach is as follows:

1. Run ApiPort on a project.
2. Understand where each non-portable type is used and how that affects overall portability.

3. If you have assemblies that are difficult to port, is it worth leaving them on .NET Framework for now? Here are
some things to consider :

Understand the nature of those types. Are they small in number but used frequently? Are they large in
number but used infrequently? Is their use concentrated, or is it spread throughout your code?
Is it easy to isolate code that isn't portable so that you can deal with it more effectively?
Do you need to refactor your code?
For those types which aren't portable, are there alternative APIs that accomplish the same task? For
example if you're using the WebClient class, you might be able to use the HttpClient class instead.
Are there different portable APIs available to accomplish a task, even if it's not a drop-in replacement?
For example if you're using XmlSchema to parse XML but don't require XML schema discovery, you
could use System.Xml.Linq APIs and implement parsing yourself as opposed to relying on an API.

You may have some functionality in your library that's incompatible with .NET Core because it relies too

https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/dotnet/api/system.net.webclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.xml.schema.xmlschema
https://docs.microsoft.com/dotnet/api/system.xml.linq

Mixing approaches

Porting your tests

Recommended approach to porting

4. Is it reasonable to write your own implementation of an unavailable .NET Framework API? You could consider
copying, modifying, and using code from the .NET Framework Reference Source. The reference source code is
licensed under the MIT License, so you have significant freedom to use the source as a basis for your own code.
Just be sure to properly attribute Microsoft in your code.

5. Repeat this process as needed for different projects.

heavily on .NET Framework or Windows-specific functionality. Is it worth leaving that functionality
behind for now and releasing a .NET Core version of your library with less features on a temporary basis
until resources are available to port the features?
Would a refactor help?

The analysis phase could take some time depending on the size of your codebase. Spending time in this phase to
thoroughly understand the scope of changes needed and to develop a plan usually saves you time in the long run,
particularly if you have a complex codebase.

Your plan could involve making significant changes to your codebase while still targeting .NET Framework 4.7.2,
making this a more structured version of the previous approach. How you go about executing your plan is
dependent on your codebase.

It's likely that you'll mix the above approaches on a per-project basis. You should do what makes the most sense to
you and for your codebase.

The best way to make sure everything works when you've ported your code is to test your code as you port it to
.NET Core. To do this, you'll need to use a testing framework that builds and runs tests for .NET Core. Currently,
you have three options:

xUnit

NUnit

MSTest

Getting Started
Tool to convert an MSTest project to xUnit

Getting Started
Blog post about migrating from MSTest to NUnit

Ultimately, the porting effort depends heavily on how your .NET Framework code is structured. A good way to
port your code is to begin with the base of your library, which are the foundational components of your code. This
might be data models or some other foundational classes and methods that everything else uses directly or
indirectly.

1. Port the test project that tests the layer of your library that you're currently porting.
2. Copy over the base of your library into a new .NET Core project and select the version of the .NET Standard

you wish to support.
3. Make any changes needed to get the code to compile. Much of this may require adding NuGet package

dependencies to your csproj file.
4. Run the tests and make any needed adjustments.
5. Pick the next layer of code to port over and repeat the prior steps.

If you start with the base of your library and move outward from the base and test each layer as needed, porting is
a systematic process where problems are isolated to one layer of code at a time.

https://github.com/Microsoft/referencesource
https://github.com/Microsoft/referencesource/blob/master/LICENSE.txt
https://xunit.github.io/
https://xunit.github.io/docs/getting-started-dotnet-core.html
https://github.com/dotnet/codeformatter/tree/master/src/XUnitConverter
https://nunit.org/
https://github.com/nunit/docs/wiki/Installation
https://www.florian-rappl.de/News/Page/275/convert-mstest-to-nunit
https://docs.microsoft.com/visualstudio/test/unit-test-basics

N E X T

Organize your project to support both .NET
Framework and .NET Core
10/17/2019 • 2 minutes to read • Edit Online

Example

Learn how to create a solution that compiles for both .NET Framework and .NET Core side-by-side. See several
options to organize projects to help you achieve this goal. Here are some typical scenarios to consider when you're
deciding how to setup your project layout with .NET Core. The list may not cover everything you want; prioritize
based on your project's needs.

Combine existing projects and .NET Core projects into single projects

What this is good for:

Simplifying your build process by compiling a single project rather than compiling multiple projects,
each targeting a different .NET Framework version or platform.
Simplifying source file management for multi-targeted projects because you must manage a single
project file. When adding/removing source files, the alternatives require you to manually sync these with
your other projects.
Easily generating a NuGet package for consumption.
Allows you to write code for a specific .NET Framework version in your libraries through the use of
compiler directives.

Unsupported scenarios:

Requires developers to use Visual Studio 2017 to open existing projects. To support older versions of
Visual Studio, keeping your project files in different folders is a better option.

 Keep existing projects and new .NET Core projects separate

What this is good for:

Continuing to support development on existing projects without having to upgrade for
developers/contributors who may not have Visual Studio 2017.
Decreasing the possibility of creating new bugs in existing projects because no code churn is required in
those projects.

Consider the repository below:

https://github.com/dotnet/docs/blob/master/docs/core/porting/project-structure.md

Replace existing projects with a multi-targeted .NET Core project

Keep existing projects and create a .NET Core project

Source Code

The following describes several ways to add support for .NET Core for this repository depending on the
constraints and complexity of the existing projects.

Reorganize the repository so that any existing *.csproj files are removed and a single *.csproj file is created that
targets multiple frameworks. This is a great option because a single project is able to compile for different
frameworks. It also has the power to handle different compilation options and dependencies per targeted
framework.

Source Code

Changes to note are:

Replacement of packages.config and *.csproj with a new .NET Core *.csproj. NuGet packages are specified with
<PackageReference> ItemGroup .

If there are existing projects that target older frameworks, you may want to leave these projects untouched and use
a .NET Core project to target future frameworks.

https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library/
https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library-csproj/
https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library-csproj/src/Car/Car.csproj

See also

Source Code

Changes to note are:

The .NET Core and existing projects are kept in separate folders.
Keeping projects in separate folders avoids forcing you to have Visual Studio 2017 or later versions. You
can create a separate solution that only opens the old projects.

.NET Core porting documentation

https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library-csproj-keep-existing/

Tools to help with porting to .NET Core
10/17/2019 • 2 minutes to read • Edit Online

WARNING

You may find the tools listed in this article helpful when porting:

.NET Portability Analyzer - A toolchain that can generate a report of how portable your code is between .NET
Framework and .NET Core: As a command-line tool As a Visual Studio Extension
.NET API analyzer - A Roslyn analyzer that discovers potential compatibility risks for C# APIs on different
platforms and detects calls to deprecated APIs.

Additionally, you can attempt to port smaller solutions or individual projects to the .NET Core project file format
with the CsprojToVs2017 tool.

CsprojToVs2017 is a third-party tool. There is no guarantee that it will work for all of your projects, and it may cause subtle
changes in behavior that you depend on. CsprojToVs2017 should be used as a starting point that automates the basic
things that can be automated. It is not a guaranteed solution to migrating project file formats.

https://github.com/dotnet/docs/blob/master/docs/core/porting/tools.md
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://github.com/Microsoft/dotnet-apiport/releases
https://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/api-analyzer
https://github.com/hvanbakel/CsprojToVs2017

Use the Windows Compatibility Pack to port code to
.NET Core
10/17/2019 • 2 minutes to read • Edit Online

Package contents

Get started

Some of the most common issues found when porting existing code to .NET Core are dependencies on APIs and
technologies that are only found in the .NET Framework. The Windows Compatibility Pack provides many of
these technologies, so it's much easier to build .NET Core applications and .NET Standard libraries.

This package is a logical extension of .NET Standard 2.0 that significantly increases API set and existing code
compiles with almost no modifications. But in order to keep the promise of .NET Standard ("it is the set of APIs
that all .NET implementations provide"), this didn't include technologies that can't work across all platforms, such
as registry, Windows Management Instrumentation (WMI), or reflection emit APIs.

The Windows Compatibility Pack sits on top of .NET Standard and provides access to technologies that are
Windows only. It's especially useful for customers that want to move to .NET Core but plan to stay on Windows as
a first step. In that scenario, not being able to use Windows-only technologies is only a migration hurdle with zero
architectural benefits.

The Windows Compatibility Pack is provided via the NuGet Package Microsoft.Windows.Compatibility and can be
referenced from projects targeting .NET Core or .NET Standard.

It provides about 20,000 APIs, including Windows-only as well as cross-platform APIs from the following
technology areas:

Code Pages
CodeDom
Configuration
Directory Services
Drawing
ODBC
Permissions
Ports
Windows Access Control Lists (ACL)
Windows Communication Foundation (WCF)
Windows Cryptography
Windows EventLog
Windows Management Instrumentation (WMI)
Windows Performance Counters
Windows Registry
Windows Runtime Caching
Windows Services

For more information, see the specification of the compatibility pack.

https://github.com/dotnet/docs/blob/master/docs/core/porting/windows-compat-pack.md
https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://github.com/dotnet/designs/blob/master/accepted/compat-pack/compat-pack.md

private static string GetLoggingPath()
{
 // Verify the code is running on Windows.
 if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
 {
 using (var key = Registry.CurrentUser.OpenSubKey(@"Software\Fabrikam\AssetManagement"))
 {
 if (key?.GetValue("LoggingDirectoryPath") is string configuredPath)
 return configuredPath;
 }
 }

 // This is either not running on Windows or no logging path was configured,
 // so just use the path for non-roaming user-specific data files.
 var appDataPath = Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData);
 return Path.Combine(appDataPath, "Fabrikam", "AssetManagement", "Logging");
}

1. Before porting, make sure to take a look at the Porting Process.

2. When porting existing code to .NET Core or .NET Standard, install the NuGet package
Microsoft.Windows.Compatibility.

3. If you want to stay on Windows, you're all set.

4. If you want to run the .NET Core application or .NET Standard library on Linux or macOS, use the API
Analyzer to find usage of APIs that won't work cross-platform.

5. Either remove the usages of those APIs, replace them with cross-platform alternatives, or guard them using
a platform check, like:

For a demo, check out the Channel 9 video of the Windows Compatibility Pack.

https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/api-analyzer
https://channel9.msdn.com/Events/Connect/2017/T123

How to port a Windows Forms desktop app to .NET
Core
11/12/2019 • 8 minutes to read • Edit Online

FILE DESCRIPTION

MyApps.sln The name of the solution file.

MyForms.csproj The name of the .NET Framework Windows Forms project to
port.

MyFormsCore.csproj The name of the new .NET Core project you create.

MyAppCore.exe The .NET Core Windows Forms app executable.

Prerequisites

NOTE

Consider

This article describes how to port your Windows Forms-based desktop app from .NET Framework to .NET Core
3.0. The .NET Core 3.0 SDK includes support for Windows Forms applications. Windows Forms is still a Windows-
only framework and only runs on Windows. This example uses the .NET Core SDK CLI to create and manage your
project.

In this article, various names are used to identify types of files used for migration. When migrating your project,
your files will be named differently, so mentally match them to the ones listed below:

Visual Studio 2019 for any designer work you want to do.

Install the following Visual Studio workloads:

.NET desktop development

.NET cross-platform development
A working Windows Forms project in a solution that builds and runs without issue.

Your project must be coded in C#.

Install the latest .NET Core 3.0 preview.

Visual Studio 2017 doesn't support .NET Core 3.0 projects. Visual Studio 2019 supports .NET Core 3.0 projects but doesn't
yet support the visual designer for .NET Core 3.0 Windows Forms projects. To use the visual designer, you must have a .NET
Windows Forms project in your solution that shares the forms files with the .NET Core project.

When porting a .NET Framework Windows Forms application, there are a few things you must consider.

1. Check that your application is a good candidate for migration.

Use the .NET Portability Analyzer to determine if your project will migrate to .NET Core 3.0. If your project
has issues with .NET Core 3.0, the analyzer helps you identify those problems.

https://github.com/dotnet/docs/blob/master/docs/core/porting/winforms.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://aka.ms/netcore3download
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer

Create a new SDK project

SolutionFolder
├───MyApps.sln
├───MyFormsApp
│ └───MyForms.csproj
└───MyFormsAppCore <--- New folder for core project

<Project Sdk="Microsoft.NET.Sdk.WindowsDesktop">

 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>
 </PropertyGroup>

</Project>

dotnet new winforms -o MyFormsAppCore -n MyFormsCore

2. You're using a different version of Windows Forms.

When .NET Core 3.0 Preview 1 was released, Windows Forms went open source on GitHub. The code for
.NET Core Windows Forms is a fork of the .NET Framework Windows Forms codebase. It's possible some
differences exist and your app won't port.

3. The Windows Compatibility Pack may help you migrate.

Some APIs that are available in .NET Framework aren't available in .NET Core 3.0. The Windows
Compatibility Pack adds many of these APIs and may help your Windows Forms app become compatible
with .NET Core.

4. Update the NuGet packages used by your project.

It's always a good practice to use the latest versions of NuGet packages before any migration. If your
application is referencing any NuGet packages, update them to the latest version. Ensure your application
builds successfully. After upgrading, if there are any package errors, downgrade the package to the latest
version that doesn't break your code.

5. Visual Studio 2019 doesn't yet support the Forms Designer for .NET Core 3.0

Currently, you need to keep your existing .NET Framework Windows Forms project file if you want to use
the Forms Designer from Visual Studio.

The new .NET Core 3.0 project you create must be in a different directory from your .NET Framework project. If
they're both in the same directory, you may run into conflicts with the files that are generated in the obj directory.
In this example, we'll create a directory named MyFormsAppCore in the SolutionFolder directory:

Next, you need to create the MyFormsCore.csproj project in the MyFormsAppCore directory. You can create
this file manually by using the text editor of choice. Paste in the following XML:

If you don't want to create the project file manually, you can use Visual Studio or the .NET Core SDK to generate
the project. However, you must delete all other files generated by the project template except for the project file. To
use the SDK, run the following command from the SolutionFolder directory:

After you create the MyFormsCore.csproj, your directory structure should look like the following:

SolutionFolder
├───MyApps.sln
├───MyFormsApp
│ └───MyForms.csproj
└───MyFormsAppCore
 └───MyFormsCore.csproj

dotnet sln add .\MyFormsAppCore\MyFormsCore.csproj

Fix assembly info generation

<Project Sdk="Microsoft.NET.Sdk.WindowsDesktop">

 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>

 <GenerateAssemblyInfo>false</GenerateAssemblyInfo>
 <AssemblyName>MyCoreApp</AssemblyName>
 <RootNamespace>WindowsFormsApp1</RootNamespace>
 </PropertyGroup>

</Project>

Add source code

You'll want to add the MyFormsCore.csproj project to MyApps.sln with either Visual Studio or the .NET Core
CLI from the SolutionFolder directory:

Windows Forms projects that were created with .NET Framework include an AssemblyInfo.cs file, which contains
assembly attributes such as the version of the assembly to be generated. SDK-style projects automatically generate
this information for you based on the SDK project file. Having both types of "assembly info" creates a conflict.
Resolve this problem by disabling automatic generation, which forces the project to use your existing
AssemblyInfo.cs file.

There are three settings to add to the main <PropertyGroup> node.

GenerateAssemblyInfo
When you set this property to false , it won't generate the assembly attributes. This avoids the conflict with
the existing AssemblyInfo.cs file from the .NET Framework project.

AssemblyName
The value of this property is the output binary created when you compile. The name doesn't need an
extension added to it. For example, using MyCoreApp produces MyCoreApp.exe .

RootNamespace
The default namespace used by your project. This should match the default namespace of the .NET
Framework project.

Add these three elements to the <PropertyGroup> node in the MyFormsCore.csproj file:

Right now, the MyFormsCore.csproj project doesn't compile any code. By default, .NET Core projects
automatically include all source code in the current directory and any child directories. You must configure the
project to include code from the .NET Framework project using a relative path. If your .NET Framework project
used .resx files for icons and resources for your forms, you'll need to include those too.

 <ItemGroup>
 <Compile Include="..\MyFormsApp***.cs" />
 <EmbeddedResource Include="..\MyFormsApp***.resx" />
 </ItemGroup>

Add NuGet packages

dotnet add .\MyFormsAppCore\MyFormsCore.csproj package MetroFramework
dotnet add .\MyFormsAppCore\MyFormsCore.csproj package MetroFramework.Design
dotnet add .\MyFormsAppCore\MyFormsCore.csproj package MetroFramework.Fonts

 <ItemGroup>
 <PackageReference Include="MetroFramework" Version="1.2.0.3" />
 <PackageReference Include="MetroFramework.Design" Version="1.2.0.3" />
 <PackageReference Include="MetroFramework.Fonts" Version="1.2.0.3" />
 </ItemGroup>

Port control libraries

FILE DESCRIPTION

MyApps.sln The name of the solution file.

MyControls.csproj The name of the .NET Framework Windows Forms Controls
project to port.

MyControlsCore.csproj The name of the new .NET Core library project you create.

MyCoreControls.dll The .NET Core Windows Forms Controls library.

Add the following <ItemGroup> node to your project. Each statement includes a file glob pattern that includes child
directories.

Alternatively, you can create a <Compile> or <EmbeddedResource> entry for each file in your .NET Framework
project.

Add each NuGet package referenced by the .NET Framework project to the .NET Core project.

Most likely your .NET Framework Windows Forms app has a packages.config file that contains a list of all of the
NuGet packages that are referenced by your project. You can look at this list to determine which NuGet packages
to add to the .NET Core project. For example, if the .NET Framework project referenced the MetroFramework ,
MetroFramework.Design , and MetroFramework.Fonts NuGet packages, add each to the project with either Visual

Studio or the .NET Core CLI from the SolutionFolder directory:

The previous commands would add the following NuGet references to the MyFormsCore.csproj project:

If you have a Windows Forms Controls library project to port, the directions are the same as porting a .NET
Framework Windows Forms app project, except for a few settings. And instead of compiling to an executable, you
compile to a library. The difference between the executable project and the library project, besides paths for the file
globs that include your source code, is minimal.

Using the previous step's example, lets expand what projects and files we're working with.

SolutionFolder
├───MyApps.sln
├───MyFormsApp
│ └───MyForms.csproj
├───MyFormsAppCore
│ └───MyFormsCore.csproj
│
├───MyFormsControls
│ └───MyControls.csproj
└───MyFormsControlsCore
 └───MyControlsCore.csproj <--- New project for core controls

 <Project Sdk="Microsoft.NET.Sdk.WindowsDesktop">

 <PropertyGroup>
- <OutputType>WinExe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>

 <GenerateAssemblyInfo>false</GenerateAssemblyInfo>
- <AssemblyName>MyCoreApp</AssemblyName>
- <RootNamespace>WindowsFormsApp1</RootNamespace>
+ <AssemblyName>MyControlsCore</AssemblyName>
+ <RootNamespace>WindowsFormsControlLibrary1</RootNamespace>
 </PropertyGroup>

 <ItemGroup>
- <Compile Include="..\MyFormsApp***.cs" />
- <EmbeddedResource Include="..\MyFormsApp***.resx" />
+ <Compile Include="..\MyFormsControls***.cs" />
+ <EmbeddedResource Include="..\MyFormsControls***.resx" />
 </ItemGroup>

 </Project>

<Project Sdk="Microsoft.NET.Sdk.WindowsDesktop">

 <PropertyGroup>

 <TargetFramework>netcoreapp3.0</TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>

 <GenerateAssemblyInfo>false</GenerateAssemblyInfo>
 <AssemblyName>MyCoreControls</AssemblyName>
 <RootNamespace>WindowsFormsControlLibrary1</RootNamespace>
 </PropertyGroup>

 <ItemGroup>
 <Compile Include="..\MyFormsControls***.cs" />
 <EmbeddedResource Include="..\MyFormsControls***.resx" />
 </ItemGroup>

</Project>

Consider the differences between the MyControlsCore.csproj project and the previously created
MyFormsCore.csproj project.

Here is an example of what the .NET Core Windows Forms Controls library project file would look like:

As you can see, the <OutputType> node was removed, which defaults the compiler to produce a library instead of
an executable. The <AssemblyName> and <RootNamespace> were changed. Specifically the <RootNamespace> should
match the namespace of the Windows Forms Controls library you are porting. And finally, the <Compile> and

dotnet add .\MyFormsAppCore\MyFormsCore.csproj reference .\MyFormsControlsCore\MyControlsCore.csproj

 <ItemGroup>
 <ProjectReference Include="..\MyFormsControlsCore\MyControlsCore.csproj" />
 </ItemGroup>

Problems compiling

dotnet add .\MyFormsAppCore\MyFormsCore.csproj package Microsoft.Windows.Compatibility

 <ItemGroup>
 <PackageReference Include="Microsoft.Windows.Compatibility" Version="2.0.1" />
 </ItemGroup>

Windows Forms Designer

Next steps

<EmbeddedResource> nodes were adjusted to point to the folder of the Windows Forms Controls library you are
porting.

Next, in the main .NET Core MyFormsCore.csproj project add reference to the new .NET Core Windows Forms
Control library. Add a reference with either Visual Studio or the .NET Core CLI from the SolutionFolder
directory:

The previous command adds the following to the MyFormsCore.csproj project:

If you have problems compiling your projects, you may be using some Windows-only APIs that are available in
.NET Framework but not available in .NET Core. You can try adding the Windows Compatibility Pack NuGet
package to your project. This package only runs on Windows and adds about 20,000 Windows APIs to .NET Core
and .NET Standard projects.

The previous command adds the following to the MyFormsCore.csproj project:

As detailed in this article, Visual Studio 2019 only supports the Forms Designer in .NET Framework projects. By
creating a side-by-side .NET Core project, you can test your project with .NET Core while you use the .NET
Framework project to design forms. Your solution file includes both the .NET Framework and .NET Core projects.
Add and design your forms and controls in the .NET Framework project, and based on the file glob patterns we
added to the .NET Core projects, any new or changed files will automatically be included in the .NET Core projects.

Once Visual Studio 2019 supports the Windows Forms Designer, you can copy/paste the content of your .NET
Core project file into the .NET Framework project file. Then delete the file glob patterns added with the <Source>

and <EmbeddedResource> items. Fix the paths to any project reference used by your app. This effectively upgrades
the .NET Framework project to a .NET Core project.

Read more about the Windows Compatibility Pack.
Watch a video on porting your .NET Framework Windows Forms project to .NET Core.

https://www.youtube.com/watch?v=upVQEUc_KwU

2 minutes to read

Dependency loading in .NET Core
11/1/2019 • 2 minutes to read • Edit Online

Understanding AssemblyLoadContext

Loading details

Create a .NET Core application with plugins

How to use and debug assembly unloadability in .NET Core

Every .NET Core application has dependencies. Even the simple hello world app has dependencies on portions of
the .NET Core class libraries.

Understanding .NET Core default assembly loading logic can help understanding and debugging typical
deployment issues.

In some applications, dependencies are dynamically determined at runtime. In these situations, it's critical to
understand how managed assemblies and unmanaged dependencies are loaded.

The AssemblyLoadContext API is central to the .NET Core loading design. The Understanding
AssemblyLoadContext article provides a conceptual overview to the design.

The loading algorithm details are covered briefly in several articles:

Managed assembly loading algorithm
Satellite assembly loading algorithm
Unmanaged (native) library loading algorithm
Default probing

The tutorial Create a .NET Core application with plugins describes how to create a custom AssemblyLoadContext.
It uses an AssemblyDependencyResolver to resolve the dependencies of the plugin. The tutorial correctly isolates
the plugin's dependencies from the hosting application.

The How to use and debug assembly unloadability in .NET Core article is a step-by-step tutorial. It shows how to
load a .NET Core application, execute, and then unload it. The article also provides debugging tips.

https://github.com/dotnet/docs/blob/master/docs/core/dependency-loading/overview.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblydependencyresolver
https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability

Understanding
System.Runtime.Loader.AssemblyLoadContext
10/12/2019 • 4 minutes to read • Edit Online

What is the AssemblyLoadContext?

When do you need multiple AssemblyLoadContext instances?

What is special about the AssemblyLoadContext.Default instance?

How does AssemblyLoadContext support dynamic dependencies?

The AssemblyLoadContext class is unique to .NET Core. This article attempts to supplement the
AssemblyLoadContext API documentation with conceptual information.

This article is relevant to developers implementing dynamic loading, especially dynamic loading framework
developers.

Every .NET Core application implicitly uses the AssemblyLoadContext. It's the runtime's provider for locating and
loading dependencies. Whenever a dependency is loaded, an AssemblyLoadContext instance is invoked to locate it.

It provides a service of locating, loading, and caching managed assemblies and other dependencies.

To support dynamic code loading and unloading, it creates an isolated context for loading code and its
dependencies in their own AssemblyLoadContext instance.

A single AssemblyLoadContext instance is limited to loading exactly one version of an Assembly per simple
assembly name, AssemblyName.Name.

This restriction can become a problem when loading code modules dynamically. Each module is independently
compiled and may depend on different versions of an Assembly. This problem commonly occurs when different
modules depend on different versions of a commonly used library.

To support dynamically loading code, the AssemblyLoadContext API provides for loading conflicting versions of
an Assembly in the same application. Each AssemblyLoadContext instance provides a unique dictionary mapping
each AssemblyName.Name to a specific Assembly instance.

It also provides a convenient mechanism for grouping dependencies related to a code module for later unload.

The AssemblyLoadContext.Default instance is automatically populated by the runtime at startup. It uses default
probing to locate and find all static dependencies.

It solves the most common dependency loading scenarios.

AssemblyLoadContext has various events and virtual functions that can be overridden.

The AssemblyLoadContext.Default instance only supports overriding the events.

The articles Managed assembly loading algorithm, Satellite assembly loading algorithm, and Unmanaged (native)
library loading algorithm refer to all the available events and virtual functions. The articles show each event and
function's relative position in the loading algorithms. This article doesn't reproduce that information.

This section covers the general principles for the relevant events and functions.

https://github.com/dotnet/docs/blob/master/docs/core/dependency-loading/understanding-assemblyloadcontext.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname.name#System_Reflection_AssemblyName_Name
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname.name#System_Reflection_AssemblyName_Name
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default

How are dynamic dependencies isolated?

How are dependencies shared?

Complications
Type conversion issues

Be repeatable. A query for a specific dependency must always result in the same response. The same loaded
dependency instance must be returned. This requirement is fundamental for cache consistency. For managed
assemblies in particular, we're creating a Assembly cache. The cache key is a simple assembly name,
AssemblyName.Name.
Typically don't throw. It's expected that these functions return null rather than throw when unable to find
the requested dependency. Throwing will prematurely end the search and be propagate an exception to the
caller. Throwing should be restricted to unexpected errors like a corrupted assembly or an out of memory
condition.
Avoid recursion. Be aware that these functions and handlers implement the loading rules for locating
dependencies. Your implementation shouldn't call APIs that trigger recursion. Your code should typically call
AssemblyLoadContext load functions that require a specific path or memory reference argument.
Load into the correct AssemblyLoadContext. The choice of where to load dependencies is application-
specific. The choice is implemented by these events and functions. When your code calls
AssemblyLoadContext load-by-path functions call them on the instance where you want the code loaded.
Sometime returning null and letting the AssemblyLoadContext.Default handle the load may be the simplest
option.
Be aware of thread races. Loading can be triggered by multiple threads. The AssemblyLoadContext handles
thread races by atomically adding assemblies to its cache. The race loser's instance is discarded. In your
implementation logic, don't add extra logic that doesn't handle multiple threads properly.

Each AssemblyLoadContext instance represents a unique scope for Assembly instances and Type definitions.

There's no binary isolation between these dependencies. They're only isolated by not finding each other by name.

In each AssemblyLoadContext:

AssemblyName.Name may refer to a different Assembly instance.
Type.GetType may return a different type instance for the same type name .

Dependencies can easily be shared between AssemblyLoadContext instances. The general model is for one
AssemblyLoadContext to load a dependency. The other shares the dependency by using a reference to the loaded
assembly.

This sharing is required of the runtime assemblies. These assemblies can only be loaded into the
AssemblyLoadContext.Default. The same is required for frameworks like ASP.NET , WPF , or WinForms .

It's recommended that shared dependencies should be loaded into AssemblyLoadContext.Default. This sharing is
the common design pattern.

Sharing is implemented in the coding of the custom AssemblyLoadContext instance. AssemblyLoadContext has
various events and virtual functions that can be overridden. When any of these functions return a reference to an
Assembly instance that was loaded in another AssemblyLoadContext instance, the Assembly instance is shared.
The standard load algorithm defers to AssemblyLoadContext.Default for loading to simplify the common sharing
pattern. See Managed assembly loading algorithm.

When two AssemblyLoadContext instances contain type definitions with the same name , they're not the same
type. They're the same type if and only if they come from the same Assembly instance.

https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname.name#System_Reflection_AssemblyName_Name
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname.name#System_Reflection_AssemblyName_Name
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.type.gettype
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly

Debugging type conversion issues

// In debugger look at each assembly's instance, Location, and FullName
a.GetType().Assembly
b.GetType().Assembly
// In debugger look at each AssemblyLoadContext's instance and name
System.Runtime.AssemblyLoadContext.GetLoadContext(a.GetType().Assembly)
System.Runtime.AssemblyLoadContext.GetLoadContext(b.GetType().Assembly)

Resolving type conversion issues

To complicate matters, exception messages about these mismatched types can be confusing. The types are referred
to in the exception messages by their simple type names. The common exception message in this case would be of
the form:

Object of type 'IsolatedType' cannot be converted to type 'IsolatedType'.

Given a pair of mismatched types it's important to also know:

Each type's Type.Assembly
Each type's AssemblyLoadContext, which can be obtained via the
AssemblyLoadContext.GetLoadContext(Assembly) function.

Given two objects a and b , evaluating the following in the debugger will be helpful:

There are two design patterns for solving these type conversion issues.

1. Use common shared types. This shared type can either be a primitive runtime type, or it can involve creating
a new shared type in a shared assembly. Often the shared type is an interface defined in an application
assembly. See also: How are dependencies shared?.

2. Use marshaling techniques to convert from one type to another.

https://docs.microsoft.com/dotnet/api/system.type.assembly#System_Type_Assembly
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.getloadcontext#System_Runtime_Loader_AssemblyLoadContext_GetLoadContext_System_Reflection_Assembly_
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface

Default probing
10/8/2019 • 2 minutes to read • Edit Online

Host configured probing properties

PROPERTY NAME DESCRIPTION

TRUSTED_PLATFORM_ASSEMBLIES List of platform and application assembly file paths.

PLATFORM_RESOURCE_ROOTS List of directory paths to search for satellite resource
assemblies.

NATIVE_DLL_SEARCH_DIRECTORIES List of directory paths to search for unmanaged (native)
libraries.

APP_PATHS List of directory paths to search for managed assemblies.

APP_NI_PATHS List of directory paths to search for native images of managed
assemblies.

How are the properties populated?

How do I see the probing properties from managed code?

How do I debug the probing properties' construction?

ENVIRONMENT VARIABLE DESCRIPTION

COREHOST_TRACE=1 Enables tracing.

The AssemblyLoadContext.Default instance is responsible for locating an assembly's dependencies. This article
describes the AssemblyLoadContext.Default instance's probing logic.

When the runtime is started, the runtime host provides a set of named probing properties that configure
AssemblyLoadContext.Default probe paths.

Each probing property is optional. If present, each property is a string value that contains a delimited list of
absolute paths. The delimiter is ';' on Windows and ':' on all other platforms.

There are two main scenarios for populating the properties depending on whether the <myapp>.deps.json file
exists.

When the *.deps.json file is present, it's parsed to populate the probing properties.
When the *.deps.json file isn't present, the application's directory is assumed to contain all the dependencies.
The directory's contents are used to populate the probing properties.

Additionally, the *.deps.json files for any referenced frameworks are similarly parsed.

Finally the environment variable ADDITIONAL_DEPS can be used to add additional dependencies.

Each property is available by calling the AppContext.GetData(String) function with the property name from the
table above.

The .NET Core runtime host will output useful trace messages when certain environment variables are enabled:

https://github.com/dotnet/docs/blob/master/docs/core/dependency-loading/default-probing.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.appcontext.getdata#System_AppContext_GetData_System_String_

COREHOST_TRACEFILE=<path> Traces to a file path instead of the default stderr .

COREHOST_TRACE_VERBOSITY Sets the verbosity from 1 (lowest) to 4 (highest).

ENVIRONMENT VARIABLE DESCRIPTION

Managed assembly default probing

Satellite (resource) assembly probing

Unmanaged (native) library probing

When probing to locate a managed assembly, the AssemblyLoadContext.Default looks in order at:

Files matching the AssemblyName.Name in TRUSTED_PLATFORM_ASSEMBLIES (after removing file extensions).
Native image assembly files in APP_NI_PATHS with common file extensions.
Assembly files in APP_PATHS with common file extensions.

To find a satellite assembly for a specific culture, construct a set of file paths.

For each path in PLATFORM_RESOURCE_ROOTS and then APP_PATHS , append the CultureInfo.Name string, a directory
separator, the AssemblyName.Name string, and the extension '.dll'.

If any matching file exists, attempt to load and return it.

When probing to locate an unmanaged library, the NATIVE_DLL_SEARCH_DIRECTORIES are searched looking for a
matching library.

https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname.name#System_Reflection_AssemblyName_Name
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.name#System_Globalization_CultureInfo_Name
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname.name#System_Reflection_AssemblyName_Name

Managed assembly loading algorithm
11/12/2019 • 2 minutes to read • Edit Online

When are managed assemblies loaded?

API DESCRIPTION ACTIVE ASSEMBLYLOADCONTEX T

AssemblyLoadContext.LoadFromAssem
blyName

Load-by-name The this instance.

AssemblyLoadContext.LoadFromAssem
blyPath

Load from path. The this instance.

AssemblyLoadContext.LoadFromStream Load from object. The this instance.

Assembly.LoadFile Load from path in a new
AssemblyLoadContext instance

The new AssemblyLoadContext
instance.

Assembly.LoadFrom Load from path in the
AssemblyLoadContext.Default instance.

The AssemblyLoadContext.Default
instance.

Assembly.Load(AssemblyName) Load-by-name . Inferred from caller.

Assembly.Load(Byte[]) Load from object in a new
AssemblyLoadContext instance.

The new AssemblyLoadContext
instance.

Type.GetType(String) Load-by-name . Inferred from caller.

Managed assemblies are located and loaded with an algorithm involving various stages.

All managed assemblies except satellite assemblies and WinRT assemblies use the same algorithm.

The most common mechanism to trigger a managed assembly load is a static assembly reference. These
references are inserted by the compiler whenever code uses a type defined in another assembly. These assemblies
are loaded (load-by-name) as needed by the runtime.

The direct use of specific APIs will also trigger loads:

AssemblyLoadContext.LoadFromNa
tiveImagePath

Adds a Resolving handler to
AssemblyLoadContext.Default. The
handler will load the assembly's
dependencies from its directory.

Assembly.Load(String)

Assembly.LoadWithPartialName

Prefer AssemblyLoadContext
methods.

Assembly.Load(Byte[], Byte[])

Type.GetType(String, Boolean)

Type.GetType(String, Boolean,
Boolean)

Prefer Type.GetType methods with
an assemblyResolver argument.

https://github.com/dotnet/docs/blob/master/docs/core/dependency-loading/loading-managed.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.loadfromassemblyname
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/this
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.loadfromassemblypath
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.loadfromnativeimagepath
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/this
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.loadfromstream
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/this
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.loadfile
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.loadfrom
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.resolving
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.load#System_Reflection_Assembly_Load_System_Reflection_AssemblyName_
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.load#System_Reflection_Assembly_Load_System_String_
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.loadwithpartialname
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.load#System_Reflection_Assembly_Load_System_Byte___
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.load#System_Reflection_Assembly_Load_System_Byte___System_Byte___
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.type.gettype#System_Type_GetType_System_String_
https://docs.microsoft.com/dotnet/api/system.type.gettype#System_Type_GetType_System_String_System_Boolean_
https://docs.microsoft.com/dotnet/api/system.type.gettype#System_Type_GetType_System_String_System_Boolean_System_Boolean_
https://docs.microsoft.com/dotnet/api/system.type.gettype

Assembly.GetType If type name describes an assembly
qualified generic type, trigger a
Load-by-name .

Inferred from caller.

Activator.CreateInstance(String, String) Load-by-name . Inferred from caller.

API DESCRIPTION ACTIVE ASSEMBLYLOADCONTEX T

Algorithm

Prefer Type.GetType when using
assembly qualified type names.

Activator.CreateInstance(String,
String, Object[])

Activator.CreateInstance(String,
String, Boolean, BindingFlags,
Binder, Object[], CultureInfo,
Object[])

Prefer Activator.CreateInstance
methods taking a Type argument.

The following algorithm describes how the runtime loads a managed assembly.

1. Determine the active AssemblyLoadContext.

For a static assembly reference, the active AssemblyLoadContext is the instance that loaded the
referring assembly.
Preferred APIs make the active AssemblyLoadContext explicit.
Other APIs infer the active AssemblyLoadContext. For these APIs, the
AssemblyLoadContext.CurrentContextualReflectionContext property is used. If its value is null , then
the inferred AssemblyLoadContext instance is used.
See table above.

2. For the Load-by-name methods, the active AssemblyLoadContext loads the assembly. In priority order by:

Checking its cache-by-name .

Calling the AssemblyLoadContext.Load function.

Checking the AssemblyLoadContext.Default instances' cache and running managed assembly
default probing logic.

Raising the AssemblyLoadContext.Resolving event for the active AssemblyLoadContext.

Raising the AppDomain.AssemblyResolve event.

3. For the other types of loads, the active AssemblyLoadContext loads the assembly. In priority order by:

Checking its cache-by-name .

Loading from the specified path or raw assembly object.

4. In either case, if an assembly is newly loaded, then:

The AppDomain.AssemblyLoad event is raised.
A reference is added to the assembly's AssemblyLoadContext instance's cache-by-name .

5. If the assembly is found, a reference is added as needed to the active AssemblyLoadContext instance's
cache-by-name .

https://docs.microsoft.com/dotnet/api/system.reflection.assembly.gettype
https://docs.microsoft.com/dotnet/api/system.type.gettype
https://docs.microsoft.com/dotnet/api/system.activator.createinstance#System_Activator_CreateInstance_System_String_System_String_
https://docs.microsoft.com/dotnet/api/system.activator.createinstance#System_Activator_CreateInstance_System_String_System_String_System_Object___
https://docs.microsoft.com/dotnet/api/system.activator.createinstance#System_Activator_CreateInstance_System_String_System_String_System_Boolean_System_Reflection_BindingFlags_System_Reflection_Binder_System_Object___System_Globalization_CultureInfo_System_Object___
https://docs.microsoft.com/dotnet/api/system.activator.createinstance
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.currentcontextualreflectioncontext#System_Runtime_Loader_AssemblyLoadContext_CurrentContextualReflectionContext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.load
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.resolving
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyresolve
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyload
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext

Satellite assembly loading algorithm
8/28/2019 • 2 minutes to read • Edit Online

When are satellite assemblies loaded?

Algorithm

Satellite assemblies are used to store localized resources customized for language and culture.

Satellite assemblies use a different loading algorithm than general managed assemblies.

Satellite assemblies are loaded when loading a localized resource.

The basic API to load localized resources is the System.Resources.ResourceManager class. Ultimately the
ResourceManager class will call the GetSatelliteAssembly method for each CultureInfo.Name.

Higher-level APIs may abstract the low-level API.

The .NET Core resource fallback process involves the following steps:

1. Determine the active AssemblyLoadContext instance. In all cases, the active instance is the executing
assembly's AssemblyLoadContext.

2. The active instance attempts to load a satellite assembly for the requested culture in priority order by:

NOTE

NOTE

Checking its cache.

Checking the directory of the currently executing assembly for a subdirectory that matches the
requested CultureInfo.Name (for example es-MX).

This feature was not implemented in .NET Core before 3.0.

On Linux and macOS, the subdirectory is case-sensitive and must either:

Exactly match case.
Be in lower case.

If active is the AssemblyLoadContext.Default instance, by running the default satellite (resource)
assembly probing logic.

Calling the AssemblyLoadContext.Load function.

Raising the AssemblyLoadContext.Resolving event.

Raising the AppDomain.AssemblyResolve event.

3. If a satellite assembly is loaded:

The AppDomain.AssemblyLoad event is raised.
The assembly is searched it for the requested resource. If the runtime finds the resource in the assembly,

https://github.com/dotnet/docs/blob/master/docs/core/dependency-loading/loading-resources.md
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.getsatelliteassembly
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.name#System_Globalization_CultureInfo_Name
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.name#System_Globalization_CultureInfo_Name
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.default#System_Runtime_Loader_AssemblyLoadContext_Default
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.load
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.resolving
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyresolve
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyload

NOTE

NOTE

it uses it. If it doesn't find the resource, it continues the search.

To find a resource within the satellite assembly, the runtime searches for the resource file requested by the
ResourceManager for the current CultureInfo.Name. Within the resource file, it searches for the requested resource
name. If either is not found, the resource is treated as not found.

4. The runtime next searches the parent culture assemblies through many potential levels, each time repeating
steps 2 & 3.

Each culture has only one parent, which is defined by the CultureInfo.Parent property.

The search for parent cultures stops when a culture's Parent property is CultureInfo.InvariantCulture.

For the InvariantCulture, we don't return to steps 2 & 3, but rather continue with step 5.

5. If the resource is still not found, the resource for the default (fallback) culture is used.

Typically, the resources for the default culture are included in the main application assembly. However, you
can specify UltimateResourceFallbackLocation.Satellite for the
NeutralResourcesLanguageAttribute.Location property. This value indicates that the ultimate fallback
location for resources is a satellite assembly rather than the main assembly.

The default culture is the ultimate fallback. Therefore, we recommend that you always include an exhaustive set of
resources in the default resource file. This helps prevent exceptions from being thrown. By having an exhaustive set,
you provide a fallback for all resources and ensure that at least one resource is always present for the user, even if it
is not culturally specific.

6. Finally,

If the runtime doesn't find a resource file for a default (fallback) culture, a
MissingManifestResourceException or MissingSatelliteAssemblyException exception is thrown.
If the resource file is found but the requested resource isn't present, the request returns null .

https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.name#System_Globalization_CultureInfo_Name
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.parent
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.parent
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.invariantculture#System_Globalization_CultureInfo_InvariantCulture
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.invariantculture#System_Globalization_CultureInfo_InvariantCulture
https://docs.microsoft.com/dotnet/api/system.resources.ultimateresourcefallbacklocation#System_Resources_UltimateResourceFallbackLocation_Satellite
https://docs.microsoft.com/dotnet/api/system.resources.neutralresourceslanguageattribute.location#System_Resources_NeutralResourcesLanguageAttribute_Location
https://docs.microsoft.com/dotnet/api/system.resources.missingmanifestresourceexception
https://docs.microsoft.com/dotnet/api/system.resources.missingsatelliteassemblyexception

Unmanaged (native) library loading algorithm
10/10/2019 • 2 minutes to read • Edit Online

PInvoke load library algorithm

Unmanaged libraries are located and loaded with an algorithm involving various stages.

The following algorithm describes how native libraries are loaded through PInvoke .

PInvoke uses the following algorithm when attempting to load an unmanaged assembly:

1. Determine the active AssemblyLoadContext. For an unmanaged load library, the active

AssemblyLoadContext is the one with the assembly that defines the PInvoke .

2. For the active AssemblyLoadContext, try to find the assembly in priority order by:

Checking its cache.

Calling the current System.Runtime.InteropServices.DllImportResolver delegate set by the
NativeLibrary.SetDllImportResolver(Assembly, DllImportResolver) function.

Calling the AssemblyLoadContext.LoadUnmanagedDll function on the active

AssemblyLoadContext.

Checking the AppDomain instance's cache and running the Unmanaged (native) library probing
logic.

Raising the AssemblyLoadContext.ResolvingUnmanagedDll event for the active

AssemblyLoadContext.

https://github.com/dotnet/docs/blob/master/docs/core/dependency-loading/loading-unmanaged.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.dllimportresolver
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.nativelibrary.setdllimportresolver#System_Runtime_InteropServices_NativeLibrary_SetDllImportResolver_System_Reflection_Assembly_System_Runtime_InteropServices_DllImportResolver_
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.loadunmanageddll
https://docs.microsoft.com/dotnet/api/system.appdomain
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext.resolvingunmanageddll

Create a .NET Core application with plugins
11/7/2019 • 8 minutes to read • Edit Online

Prerequisites

Create the application

This tutorial shows you how to create a custom AssemblyLoadContext to load plugins. An
AssemblyDependencyResolver is used to resolve the dependencies of the plugin. The tutorial correctly isolates the
plugin's dependencies from the hosting application. You'll learn how to:

Structure a project to support plugins.
Create a custom AssemblyLoadContext to load each plugin.
Use the System.Runtime.Loader.AssemblyDependencyResolver type to allow plugins to have dependencies.
Author plugins that can be easily deployed by just copying the build artifacts.

Install the .NET Core 3.0 SDK or a newer version.

The first step is to create the application:

dotnet new console -o AppWithPlugin

dotnet new sln

dotnet sln add AppWithPlugin/AppWithPlugin.csproj

1. Create a new folder, and in that folder run the following command:

2. To make building the project easier, create a Visual Studio solution file in the same folder. Run the following
command:

3. Run the following command to add the app project to the solution:

Now we can fill in the skeleton of our application. Replace the code in the AppWithPlugin/Program.cs file with the
following code:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/creating-app-with-plugin-support.md
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblydependencyresolver
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblydependencyresolver
https://dotnet.microsoft.com/download

using PluginBase;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Reflection;

namespace AppWithPlugin
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 if (args.Length == 1 && args[0] == "/d")
 {
 Console.WriteLine("Waiting for any key...");
 Console.ReadLine();
 }

 // Load commands from plugins.

 if (args.Length == 0)
 {
 Console.WriteLine("Commands: ");
 // Output the loaded commands.
 }
 else
 {
 foreach (string commandName in args)
 {
 Console.WriteLine($"-- {commandName} --");

 // Execute the command with the name passed as an argument.

 Console.WriteLine();
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
 }
}

Create the plugin interfaces
The next step in building an app with plugins is defining the interface the plugins need to implement. We suggest
that you make a class library that contains any types that you plan to use for communicating between your app
and plugins. This division allows you to publish your plugin interface as a package without having to ship your full
application.

In the root folder of the project, run dotnet new classlib -o PluginBase . Also, run
dotnet sln add PluginBase/PluginBase.csproj to add the project to the solution file. Delete the
PluginBase/Class1.cs file, and create a new file in the PluginBase folder named ICommand.cs with the following

interface definition:

namespace PluginBase
{
 public interface ICommand
 {
 string Name { get; }
 string Description { get; }

 int Execute();
 }
}

string[] pluginPaths = new string[]
{
 // Paths to plugins to load.
};

IEnumerable<ICommand> commands = pluginPaths.SelectMany(pluginPath =>
{
 Assembly pluginAssembly = LoadPlugin(pluginPath);
 return CreateCommands(pluginAssembly);
}).ToList();

foreach (ICommand command in commands)
{
 Console.WriteLine($"{command.Name}\t - {command.Description}");
}

ICommand command = commands.FirstOrDefault(c => c.Name == commandName);
if (command == null)
{
 Console.WriteLine("No such command is known.");
 return;
}

command.Execute();

This ICommand interface is the interface that all of the plugins will implement.

Now that the ICommand interface is defined, the application project can be filled in a little more. Add a reference
from the AppWithPlugin project to the PluginBase project with the
dotnet add AppWithPlugin\AppWithPlugin.csproj reference PluginBase\PluginBase.csproj command from the root

folder.

Replace the // Load commands from plugins comment with the following code snippet to enable it to load plugins
from given file paths:

Then replace the // Output the loaded commands comment with the following code snippet:

Replace the // Execute the command with the name passed as an argument comment with the following snippet:

And finally, add static methods to the Program class named LoadPlugin and CreateCommands , as shown here:

static Assembly LoadPlugin(string relativePath)
{
 throw new NotImplementedException();
}

static IEnumerable<ICommand> CreateCommands(Assembly assembly)
{
 int count = 0;

 foreach (Type type in assembly.GetTypes())
 {
 if (typeof(ICommand).IsAssignableFrom(type))
 {
 ICommand result = Activator.CreateInstance(type) as ICommand;
 if (result != null)
 {
 count++;
 yield return result;
 }
 }
 }

 if (count == 0)
 {
 string availableTypes = string.Join(",", assembly.GetTypes().Select(t => t.FullName));
 throw new ApplicationException(
 $"Can't find any type which implements ICommand in {assembly} from {assembly.Location}.\n" +
 $"Available types: {availableTypes}");
 }
}

Load plugins
Now the application can correctly load and instantiate commands from loaded plugin assemblies, but it's still
unable to load the plugin assemblies. Create a file named PluginLoadContext.cs in the AppWithPlugin folder with
the following contents:

using System;
using System.Reflection;
using System.Runtime.Loader;

namespace AppWithPlugin
{
 class PluginLoadContext : AssemblyLoadContext
 {
 private AssemblyDependencyResolver _resolver;

 public PluginLoadContext(string pluginPath)
 {
 _resolver = new AssemblyDependencyResolver(pluginPath);
 }

 protected override Assembly Load(AssemblyName assemblyName)
 {
 string assemblyPath = _resolver.ResolveAssemblyToPath(assemblyName);
 if (assemblyPath != null)
 {
 return LoadFromAssemblyPath(assemblyPath);
 }

 return null;
 }

 protected override IntPtr LoadUnmanagedDll(string unmanagedDllName)
 {
 string libraryPath = _resolver.ResolveUnmanagedDllToPath(unmanagedDllName);
 if (libraryPath != null)
 {
 return LoadUnmanagedDllFromPath(libraryPath);
 }

 return IntPtr.Zero;
 }
 }
}

The PluginLoadContext type derives from AssemblyLoadContext. The AssemblyLoadContext type is a special type in
the runtime that allows developers to isolate loaded assemblies into different groups to ensure that assembly
versions don't conflict. Additionally, a custom AssemblyLoadContext can choose different paths to load assemblies
from and override the default behavior. The PluginLoadContext uses an instance of the
AssemblyDependencyResolver type introduced in .NET Core 3.0 to resolve assembly names to paths. The
AssemblyDependencyResolver object is constructed with the path to a .NET class library. It resolves assemblies and

native libraries to their relative paths based on the .deps.json file for the class library whose path was passed to the
AssemblyDependencyResolver constructor. The custom AssemblyLoadContext enables plugins to have their own

dependencies, and the AssemblyDependencyResolver makes it easy to correctly load the dependencies.

Now that the AppWithPlugin project has the PluginLoadContext type, update the Program.LoadPlugin method with
the following body:

https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext

static Assembly LoadPlugin(string relativePath)
{
 // Navigate up to the solution root
 string root = Path.GetFullPath(Path.Combine(
 Path.GetDirectoryName(
 Path.GetDirectoryName(
 Path.GetDirectoryName(
 Path.GetDirectoryName(
 Path.GetDirectoryName(typeof(Program).Assembly.Location)))))));

 string pluginLocation = Path.GetFullPath(Path.Combine(root, relativePath.Replace('\\',
Path.DirectorySeparatorChar)));
 Console.WriteLine($"Loading commands from: {pluginLocation}");
 PluginLoadContext loadContext = new PluginLoadContext(pluginLocation);
 return loadContext.LoadFromAssemblyName(new
AssemblyName(Path.GetFileNameWithoutExtension(pluginLocation)));
}

Simple plugin with no dependencies

using PluginBase;
using System;

namespace HelloPlugin
{
 public class HelloCommand : ICommand
 {
 public string Name { get => "hello"; }
 public string Description { get => "Displays hello message."; }

 public int Execute()
 {
 Console.WriteLine("Hello !!!");
 return 0;
 }
 }
}

By using a different PluginLoadContext instance for each plugin, the plugins can have different or even conflicting
dependencies without issue.

Back in the root folder, do the following:

dotnet new classlib -o HelloPlugin

dotnet sln add HelloPlugin/HelloPlugin.csproj

1. Run the following command to create a new class library project named HelloPlugin :

2. Run the following command to add the project to the AppWithPlugin solution:

3. Replace the HelloPlugin/Class1.cs file with a file named HelloCommand.cs with the following contents:

Now, open the HelloPlugin.csproj file. It should look similar to the following:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

</Project>

<ItemGroup>
<ProjectReference Include="..\PluginBase\PluginBase.csproj">
 <Private>false</Private>
</ProjectReference>
</ItemGroup>

Plugin with library dependencies

Other examples in the sample

Reference a plugin from a NuGet package

In between the <Project> tags, add the following elements:

The <Private>false</Private> element is important. This tells MSBuild to not copy PluginBase.dll to the output
directory for HelloPlugin. If the PluginBase.dll assembly is present in the output directory, PluginLoadContext will
find the assembly there and load it when it loads the HelloPlugin.dll assembly. At this point, the
HelloPlugin.HelloCommand type will implement the ICommand interface from the PluginBase.dll in the output

directory of the HelloPlugin project, not the ICommand interface that is loaded into the default load context. Since
the runtime sees these two types as different types from different assemblies, the
AppWithPlugin.Program.CreateCommands method won't find the commands. As a result, the
<Private>false</Private> metadata is required for the reference to the assembly containing the plugin interfaces.

Now that the HelloPlugin project is complete, we should update the AppWithPlugin project to know where the
HelloPlugin plugin can be found. After the // Paths to plugins to load comment, add
@"HelloPlugin\bin\Debug\netcoreapp3.0\HelloPlugin.dll" as an element of the pluginPaths array.

Almost all plugins are more complex than a simple "Hello World", and many plugins have dependencies on other
libraries. The JsonPlugin and OldJson plugin projects in the sample show two examples of plugins with NuGet
package dependencies on Newtonsoft.Json . The project files themselves don't have any special information for the
project references, and (after adding the plugin paths to the pluginPaths array) the plugins run perfectly, even if
run in the same execution of the AppWithPlugin app. However, these projects don't copy the referenced
assemblies to their output directory, so the assemblies need to be present on the user's machine for the plugins to
work. There are two ways to work around this problem. The first option is to use the dotnet publish command to
publish the class library. Alternatively, if you want to be able to use the output of dotnet build for your plugin,
you can add the <CopyLocalLockFileAssemblies>true</CopyLocalLockFileAssemblies> property between the
<PropertyGroup> tags in the plugin's project file. See the XcopyablePlugin plugin project for an example.

The complete source code for this tutorial can be found in the dotnet/samples repository. The completed sample
includes a few other examples of AssemblyDependencyResolver behavior. For example, the
AssemblyDependencyResolver object can also resolve native libraries as well as localized satellite assemblies

included in NuGet packages. The UVPlugin and FrenchPlugin in the samples repository demonstrate these
scenarios.

https://github.com/dotnet/samples/tree/master/core/extensions/AppWithPlugin

<PackageReference Include="A.PluginBase" Version="1.0.0">
 <ExcludeAssets>runtime</ExcludeAssets>
</PackageReference>

Plugin target framework recommendations

Plugin framework references

Let's say that there is an app A that has a plugin interface defined in the NuGet package named A.PluginBase .
How do you reference the package correctly in your plugin project? For project references, using the
<Private>false</Private> metadata on the ProjectReference element in the project file prevented the dll from

being copied to the output.

To correctly reference the A.PluginBase package, you want to change the <PackageReference> element in the
project file to the following:

This prevents the A.PluginBase assemblies from being copied to the output directory of your plugin and ensures
that your plugin will use A's version of A.PluginBase .

Because plugin dependency loading uses the .deps.json file, there is a gotcha related to the plugin's target
framework. Specifically, your plugins should target a runtime, such as .NET Core 3.0, instead of a version of .NET
Standard. The .deps.json file is generated based on which framework the project targets, and since many .NET
Standard-compatible packages ship reference assemblies for building against .NET Standard and implementation
assemblies for specific runtimes, the .deps.json may not correctly see implementation assemblies, or it may grab
the .NET Standard version of an assembly instead of the .NET Core version you expect.

Currently, plugins can't introduce new frameworks into the process. For example, you can't load a plugin that uses
the Microsoft.AspNetCore.App framework into an application that only uses the root Microsoft.NETCore.App

framework. The host application must declare references to all frameworks needed by plugins.

2 minutes to read

Build .NET Core from source
8/28/2019 • 3 minutes to read • Edit Online

Build the CLR from source

 .\build skiptests

The ability to build .NET Core from its source code is important in multiple ways: it makes it easier to port .NET
Core to new platforms, it enables contributions and fixes to the product, and it enables the creation of custom
versions of .NET. This article gives guidance to developers who want to build and distribute their own versions of
.NET Core.

The source code for the .NET CoreCLR can be found in the dotnet/coreclr repository on GitHub.

The build currently depends on the following prerequisites:

Git
CMake
Python
a C++ compiler.

After you've installed these prerequisites, you can build the CLR by invoking the build script (build.cmd on
Windows, or build.sh on Linux and macOS) at the base of the dotnet/coreclr repository.

Installing the components differ depending on the operating system (OS). See the build instructions for your
specific OS:

Windows
Linux
macOS
FreeBSD
NetBSD

There is no cross-building across OS (only for ARM, which is built on X64).
You have to be on the particular platform to build that platform.

The build has two main buildTypes :

Debug (default)- Compiles the runtime with minimal optimizations and additional runtime checks (asserts). This
reduction in optimization level and the additional checks slow runtime execution but are valuable for debugging.
This is the recommended setting for development and testing environments.
Release - Compiles the runtime with full optimizations and without the additional runtime checks. This will yield
much faster run time performance but it can take a bit longer to build and can be difficult to debug. Pass
release to the build script to select this build type.

In addition, by default the build not only creates the runtime executables, but it also builds all the tests. There are
quite a few tests, taking a significant amount of time that isn't necessary if you just want to experiment with
changes. You can skip the tests builds by adding the skiptests argument to the build script, like in the following
example (replace .\build with ./build.sh on Unix machines):

The previous example showed how to build the Debug flavor, which has development time checks (asserts) enabled

https://github.com/dotnet/docs/blob/master/docs/core/build/index.md
https://github.com/dotnet/coreclr/
https://git-scm.com/
https://cmake.org/
https://www.python.org/
https://github.com/dotnet/coreclr/
https://github.com/dotnet/coreclr/blob/master/Documentation/building/windows-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/linux-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/osx-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/freebsd-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/netbsd-instructions.md

 .\build release skiptests

Using Your Build

Build the CLI from source

Using your build

See also

and optimizations disabled. To build the release (full speed) flavor, do the following:

You can find more build options with build by using the -? or -help qualifier.

The build places all of its generated files under the bin directory at the base of the repository. There is a bin\Log
directory that contains log files generated during the build (Most useful when the build fails). The actual output is
placed in a bin\Product[platform].[CPU architecture].[build type] directory, such as
bin\Product\Windows_NT.x64.Release.

While the 'raw' output of the build is sometimes useful, normally you're only interested in the NuGet packages,
which are placed in the .nuget\pkg subdirectory of the previous output directory.

There are two basic techniques for using your new runtime:

1. Use dotnet.exe and NuGet to compose an application. See Using Your Build for instructions on
creating a program that uses your new runtime by using the NuGet packages you just created and the
'dotnet' command-line interface (CLI). This technique is the expected way non-runtime developers are likely
to consume your new runtime.

2. Use corerun.exe to run an application using unpackaged DLLs. This repository also defines a simple
host called corerun.exe that does NOT take any dependency on NuGet. You need to tell the host where to
get the required DLLs you actually use, and you have to manually gather them together. This technique is
used by all the tests in the dotnet/coreclr repo, and is useful for quick local 'edit-compile-debug' loop such
as preliminary unit testing. See Executing .NET Core Apps with CoreRun.exe for details on using this
technique.

The source code for the .NET Core CLI can be found in the dotnet/cli repository on GitHub.

In order to build the .NET Core CLI, you need the following installed on your machine.

Windows & Linux:

macOS:
git on the PATH

git on the PATH
Xcode
OpenSSL

In order to build, run build.cmd on Windows, or build.sh on Linux and macOS from the root. If you don't want
to execute tests, run build.cmd -t:Compile or ./build.sh -t:Compile . To build the CLI in macOS Sierra, you need
to set the DOTNET_RUNTIME_ID environment variable by running export DOTNET_RUNTIME_ID=osx.10.11-x64 .

Use the dotnet executable from artifacts/{os}-{arch}/stage2 to try out the newly built CLI. If you want to use the
build output when invoking dotnet from the current console, you can also add artifacts/{os}-{arch}/stage2 to the
PATH.

.NET Core Common Language Runtime (CoreCLR)

https://github.com/dotnet/coreclr/blob/master/Documentation/workflow/UsingYourBuild.md
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr/blob/master/Documentation/workflow/UsingCoreRun.md
https://github.com/dotnet/cli/
https://github.com/dotnet/coreclr/blob/master/README.md

.NET Core CLI Developer Guide

.NET Core distribution packaging

https://github.com/dotnet/cli/blob/master/Documentation/project-docs/developer-guide.md

.NET Core distribution packaging
10/16/2019 • 6 minutes to read • Edit Online

Disk layout

{dotnet_root} (*)
├── dotnet (1)
├── LICENSE.txt (8)
├── ThirdPartyNotices.txt (8)
├── host (*)
│ └── fxr (*)
│ └── <fxr version> (2)
├── sdk (*)
│ ├── <sdk version> (3)
│ └── NuGetFallbackFolder (4) (*)
├── packs (*)
│ ├── Microsoft.AspNetCore.App.Ref (*)
│ │ └── <aspnetcore ref version> (11)
│ ├── Microsoft.NETCore.App.Ref (*)
│ │ └── <netcore ref version> (12)
│ ├── Microsoft.NETCore.App.Host.<rid> (*)
│ │ └── <apphost version> (13)
│ ├── Microsoft.WindowsDesktop.App.Ref (*)
│ │ └── <desktop ref version> (14)
│ └── NETStandard.Library.Ref (*)
│ └── <netstandard version> (15)
├── shared (*)
│ ├── Microsoft.NETCore.App (*)
│ │ └── <runtime version> (5)
│ ├── Microsoft.AspNetCore.App (*)
│ │ └── <aspnetcore version> (6)
│ ├── Microsoft.AspNetCore.All (*)
│ │ └── <aspnetcore version> (6)
│ └── Microsoft.WindowsDesktop.App (*)
│ └── <desktop app version> (7)
└── templates (*)
│ └── <templates version> (17)
/
├── etc/dotnet
│ └── install_location (16)
├── usr/share/man/man1
│ └── dotnet.1.gz (9)
└── usr/bin
 └── dotnet (10)

As .NET Core becomes available on more and more platforms, it's useful to learn how to package, name, and
version it. This way, package maintainers can help ensure a consistent experience no matter where users choose to
run .NET. This article is useful for users that are:

Attempting to build .NET Core from source.
Wanting to make changes to the .NET Core CLI that could impact the resulting layout or packages produced.

When installed, .NET Core consists of several components that are laid out as follows in the filesystem:

(1) dotnet The host (also known as the "muxer") has two distinct roles: activate a runtime to launch an
application, and activate an SDK to dispatch commands to it. The host is a native executable (dotnet.exe).

While there's a single host, most of the other components are in versioned directories (2,3,5,6). This means

https://github.com/dotnet/docs/blob/master/docs/core/build/distribution-packaging.md

multiple versions can be present on the system since they're installed side by side.

(2) host/fxr/<fxr version> contains the framework resolution logic used by the host. The host uses the
latest hostfxr that is installed. The hostfxr is responsible for selecting the appropriate runtime when
executing a .NET Core application. For example, an application built for .NET Core 2.0.0 uses the 2.0.5
runtime when it's available. Similarly, hostfxr selects the appropriate SDK during development.

(3) sdk/<sdk version> The SDK (also known as "the tooling") is a set of managed tools that are used to
write and build .NET Core libraries and applications. The SDK includes the .NET Core Command-line
interface (CLI), the managed languages compilers, MSBuild, and associated build tasks and targets, NuGet,
new project templates, and so on.

(4) sdk/NuGetFallbackFolder contains a cache of NuGet packages used by an SDK during the restore
operation, such as when running dotnet restore or dotnet build . This folder is only used prior to .NET
Core 3.0. It can't be built from source, because it contains prebuilt binary assets from nuget.org .

The shared folder contains frameworks. A shared framework provides a set of libraries at a central location so
they can be used by different applications.

(5) shared/Microsoft.NETCore.App/<runtime version> This framework contains the .NET Core
runtime and supporting managed libraries.

(6) shared/Microsoft.AspNetCore.{App,All}/<aspnetcore version> contains the ASP.NET Core
libraries. The libraries under Microsoft.AspNetCore.App are developed and supported as part of the .NET
Core project. The libraries under Microsoft.AspNetCore.All are a superset that also contains third-party
libraries.

(7) shared/Microsoft.Desktop.App/<desktop app version> contains the Windows desktop libraries.
This isn't included on non-Windows platforms.

(8) LICENSE.txt,ThirdPartyNotices.txt are the .NET Core license and licenses of third-party libraries
used in .NET Core, respectively.

(9,10) dotnet.1.gz, dotnet dotnet.1.gz is the dotnet manual page. dotnet is a symlink to the dotnet
host(1). These files are installed at well known locations for system integration.

(11,12) Microsoft.NETCore.App.Ref,Microsoft.AspNetCore.App.Ref describe the API of an x.y

version of .NET Core and ASP.NET Core respectively. These packs are used when compiling for those
target versions.

(13) Microsoft.NETCore.App.Host.<rid> contains a native binary for platform rid . This binary is a
template when compiling a .NET Core application into a native binary for that platform.

(14) Microsoft.WindowsDesktop.App.Ref describes the API of x.y version of Windows Desktop
applications. These files are used when compiling for that target. This isn't provided on non-Windows
platforms.

(15) NETStandard.Library.Ref describes the netstandard x.y API. These files are used when compiling
for that target.

(16) /etc/dotnet/install_location is a file that contains the full path for {dotnet_root} . The path may end
with a newline. It's not necessary to add this file when the root is /usr/share/dotnet .

(17) templates contains the templates used by the SDK. For example, dotnet new finds project templates
here.

The folders marked with (*) are used by multiple packages. Some package formats (for example, rpm) require
special handling of such folders. The package maintainer must take care of this.

Recommended packages
.NET Core versioning is based on the runtime component [major].[minor] version numbers. The SDK version
uses the same [major].[minor] and has an independent [patch] that combines feature and patch semantics for
the SDK. For example: SDK version 2.2.302 is the second patch release of the third feature release of the SDK that
supports the 2.2 runtime. For more information about how versioning works, see .NET Core versioning overview.

Some of the packages include part of the version number in their name. This allows you to install a specific
version. The rest of the version isn't included in the version name. This allows the OS package manager to update
the packages (for example, automatically installing security fixes). Supported package managers are Linux specific.

The following lists the recommended packages:

dotnet-sdk-[major].[minor] - Installs the latest sdk for specific runtime

Version: <runtime version>
Example: dotnet-sdk-2.1
Contains: (3),(4)
Dependencies: dotnet-runtime-[major].[minor] , aspnetcore-runtime-[major].[minor] ,
dotnet-targeting-pack-[major].[minor] , aspnetcore-targeting-pack-[major].[minor] ,
netstandard-targeting-pack-[netstandard_major].[netstandard_minor] ,
dotnet-apphost-pack-[major].[minor] , dotnet-templates-[major].[minor]

aspnetcore-runtime-[major].[minor] - Installs a specific ASP.NET Core runtime

Version: <aspnetcore runtime version>
Example: aspnetcore-runtime-2.1
Contains: (6)
Dependencies: dotnet-runtime-[major].[minor]

dotnet-runtime-deps-[major].[minor] (Optional) - Installs the dependencies for running self-contained
applications

Version: <runtime version>
Example: dotnet-runtime-deps-2.1
Dependencies: distro specific dependencies

dotnet-runtime-[major].[minor] - Installs a specific runtime

Version: <runtime version>
Example: dotnet-runtime-2.1
Contains: (5)
Dependencies: dotnet-hostfxr-[major].[minor] , dotnet-runtime-deps-[major].[minor]

dotnet-hostfxr-[major].[minor] - dependency

Version: <runtime version>
Example: dotnet-hostfxr-3.0
Contains: (2)
Dependencies: dotnet-host

dotnet-host - dependency

Version: <runtime version>
Example: dotnet-host
Contains: (1),(8),(9),(10),(16)

dotnet-apphost-pack-[major].[minor] - dependency

Building packages

Version: <runtime version>
Contains: (13)

dotnet-targeting-pack-[major].[minor] - Allows targeting a non-latest runtime

Version: <runtime version>
Contains: (12)

aspnetcore-targeting-pack-[major].[minor] - Allows targeting a non-latest runtime

Version: <aspnetcore runtime version>
Contains: (11)

netstandard-targeting-pack-[netstandard_major].[netstandard_minor] - Allows targeting a netstandard
version

Version: <sdk version>
Contains: (15)

dotnet-templates-[major].[minor]

Version: <sdk version>
Contains: (15)

The dotnet-runtime-deps-[major].[minor] requires understanding the distro-specific dependencies. Because the
distro build system may be able to derive this automatically, the package is optional, in which case these
dependencies are added directly to the dotnet-runtime-[major].[minor] package.

When package content is under a versioned folder, the package name [major].[minor] match the versioned folder
name. For all packages, except the netstandard-targeting-pack-[netstandard_major].[netstandard_minor] , this also
matches with the .NET Core version.

Dependencies between packages should use an equal or greater than version requirement. For example,
dotnet-sdk-2.2:2.2.401 requires aspnetcore-runtime-2.2 >= 2.2.6 . This makes it possible for the user to upgrade

their installation via a root package (for example, dnf update dotnet-sdk-2.2).

Most distributions require all artifacts to be built from source. This has some impact on the packages:

The third-party libraries under shared/Microsoft.AspNetCore.All can't be easily built from source. So that
folder is omitted from the aspnetcore-runtime package.

The NuGetFallbackFolder is populated using binary artifacts from nuget.org . It should remain empty.

Multiple dotnet-sdk packages may provide the same files for the NuGetFallbackFolder . To avoid issues with the
package manager, these files should be identical (checksum, modification date, and so on).

The dotnet/source-build repository provides instructions on how to build a source tarball of the .NET Core SDK
and all its components. The output of the source-build repository matches the layout described in the first section
of this article.

https://github.com/dotnet/source-build

project.json and Visual Studio 2015 with .NET Core
1/17/2019 • 2 minutes to read • Edit Online

PDF documentation

Documentation repository branch

Current version of the documentation

On March 7, 2017, the .NET Core and ASP.NET Core documentation was updated for the release of Visual Studio
2017. The previous version of the documentation used Visual Studio 2015 and pre-release tooling based on the
project.json file.

The documentation version from before the March 7 update is available in a PDF file and in a branch in the
documentation repository.

The best source of the earlier documentation is the .NET Core - PDF for project.json and Visual Studio 2015.

You can view the earlier version of the documentation in the repository, but many links won't work and many code
snippets are references that aren't expanded.

.NET Core - project.json branch in the documentation repository

.NET Core documentation
ASP.NET Core documentation

https://github.com/dotnet/docs/blob/master/docs/project-json.md
https://github.com/dotnet/docs/blob/project.json/net-core-project-json.pdf
https://github.com/dotnet/docs/tree/project.json/docs
https://docs.microsoft.com/aspnet/core/

	Cover Page
	.NET Core Guide
	About .NET Core
	Get started
	Get started with C# and Visual Studio Code
	Build a C# Hello World app with .NET Core in Visual Studio 2017
	Build a Visual Basic Hello World app with .NET Core in Visual Studio 2017
	Debug your C# or Visual Basic .NET Core Hello World application using Visual Studio 2017
	Publish your Hello World application with Visual Studio 2017
	Build a .NET Standard library with C# and .NET Core in Visual Studio 2017
	Build a .NET Standard library with Visual Basic and .NET Core in Visual Studio 2017
	Test a .NET Standard library with .NET Core in Visual Studio 2017
	Consume a .NET Standard library in Visual Studio 2017

	Windows Prerequisites
	macOS Prerequisites
	Linux Prerequisites
	What's new in .NET Core
	What's new in .NET Core 3.0
	What's new in .NET Core 2.2
	What's new in .NET Core 2.1
	What's new in .NET Core 2.0

	Application Compatibility
	Tutorials
	Templates for the CLI
	1 - Create an item template
	2 - Create a project template
	3 - Create a template pack

	Get started with .NET Core on macOS
	Get started with .NET Core on macOS using Visual Studio for Mac
	Building a complete .NET Core solution on macOS using Visual Studio for Mac
	Get started with .NET Core using the CLI tools
	Organizing and testing projects with the .NET Core command line
	Developing Libraries with Cross Platform Tools
	Create a .NET Core application with plugins
	Developing ASP.NET Core applications
	Hosting .NET Core from native code

	Native Interoperability
	Exposing .NET Core Components to COM

	Packages, Metapackages and Frameworks
	Changes in CLI overview
	Dependency management
	Additions to the csproj format

	Migration
	.NET Core 2.0 to 2.1
	Migrating from project.json
	Mapping between project.json and csproj
	Migrating from DNX

	Application Deployment
	Deploy apps with CLI tools
	Deploy apps with Visual Studio
	Creating a NuGet Package with Cross Platform Tools
	Self-contained deployment runtime roll forward
	Runtime package store

	Docker
	Introduction to .NET and Docker
	Containerize a .NET Core app
	Container Tools in Visual Studio

	Diagnostic tools
	Overview
	Managed debuggers
	Logging and tracing
	.NET Core CLI global tools
	dotnet-counters
	dotnet-dump
	dotnet-trace

	Unit Testing
	Unit testing best practices
	C# unit testing with xUnit
	C# unit testing with NUnit
	C# unit testing with MSTest
	F# unit testing with xUnit
	F# unit testing with NUnit
	F# unit testing with MSTest
	VB unit testing with xUnit
	VB unit testing with NUnit
	VB unit testing with MSTest
	Running selective unit tests
	Unit testing published output
	Live unit testing .NET Core projects with Visual Studio

	Continuous Integration
	Versioning
	.NET Core version selection
	Removing outdated runtimes and SDKs

	Runtime Identifier (RID) catalog
	.NET Core SDK Overview
	.NET Core CLI
	Overview
	Tools
	Global Tools
	Overview
	Create a Global Tool

	Troubleshoot tool usage issues

	Elevated access
	Extensibility Model
	Custom templates
	Enable TAB completion
	Telemetry
	global.json overview
	Reference
	dotnet
	dotnet build
	dotnet build-server
	dotnet clean
	dotnet help
	dotnet migrate
	dotnet msbuild
	dotnet new
	dotnet nuget
	dotnet nuget delete
	dotnet nuget locals
	dotnet nuget push

	dotnet pack
	dotnet publish
	dotnet restore
	dotnet run
	dotnet sln
	dotnet store
	dotnet test
	dotnet tool
	dotnet tool install
	dotnet tool list
	dotnet tool uninstall
	dotnet tool update

	dotnet vstest
	dotnet-install scripts
	Project reference commands
	dotnet add reference
	dotnet list reference
	dotnet remove reference

	Project package commands
	dotnet add package
	dotnet list package
	dotnet remove package

	.NET Core Additional Tools
	WCF Web Service Reference Provider
	dotnet-svcutil
	dotnet-svcutil.xmlserializer
	XML Serializer Generator

	Porting from .NET Framework
	.NET Framework technologies unavailable for .NET Core
	Analyzing third-party dependencies
	Porting libraries
	Organizing projects for .NET Core
	Tools to help with porting to .NET Core
	Using the Windows Compatibility Pack
	Port Windows Forms projects
	Port WPF projects

	Dependency loading
	Overview
	Understanding AssemblyLoadContext
	Loading details
	Default dependency probing
	Loading managed assemblies
	Loading satellite assemblies
	Loading unmanaged libraries

	Tutorials
	Create a .NET Core application with plugins
	How to use and debug assembly unloadability in .NET Core

	Build .NET Core from source
	.NET Core distribution packaging

	VS 2015/project.json docs

